用户名: 密码: 验证码:
一种高效汽油脱臭催化剂的制备与性能表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在当今炼油工业中,轻质油品的脱臭工艺主要以液—液催化氧化法和常规固定床氧化法为主。在液—液催化氧化法中所使用的催化剂主要为聚酞菁钴(CoPPc)和磺化酞菁钴(CoSPc),CoPPc在碱性溶液中的溶解度一般较低,很难达到较高的催化活性;CoSPc虽然在碱性溶液中的溶解度较高,但在脱臭过程中,易生成二氧加合物,导致其催化活性降低,寿命较短。在固定床脱臭工艺中常以浸渍法制得固载磺化酞菁钴为催化剂,该催化剂虽然具有较高的活性和较长的使用寿命,但制备成本较高,且易于流失。为此,本文选用双核酞菁钴磺酸盐(bi-CoSPc)作为轻质油品脱臭催化剂,该催化剂具有平面双核的分子结构,这不仅增加了其在碱液中的溶解度,同时也减弱了二氧加合物的形成趋势,有望在轻质油品催化氧化脱臭工艺中具有更高的催化活性和使用寿命。
    本文以邻苯二甲酸酐(PA)为原料探索了bi-CoSPc的合成工艺,首先PA经磺化制得二磺化苯酐(DSPA),再与均苯四甲酸二酐(PMDA)、尿素及CoCl2反应,制得bi-CoSPc。结果发现:高温磺化过程所需的反应温度过高,导致SO3大量回流,升温过程缓慢;分离磺化产物过程操作复杂,并生成大量副产物,同时引入的Ca2+和NH4+,影响催化剂对汽油的脱臭性能;在合成反应后期体系发泡严重,致使反应不完全,所得产物的收率及纯度较低。
    对所制备的bi-CoSPc脱臭性能进行考察,确定了催化裂化汽油液—液催化氧化脱臭法的适宜条件:反应温度为40 ℃,反应时间为3 min,碱液浓度为10 wt.%,催化剂加入量为1.0 g(L-1。在相同的工艺条件下,对比了bi-CoSPc与CoSPc和进口脱臭催化剂(ARI 100-EXL)的脱臭效率,结果表明:bi-CoSPc对催化裂化汽油的脱臭效率高于CoSPc,与进口脱臭催化剂的脱臭效率相当。
    针对bi-CoSPc在合成过程中所出现的问题,本文对bi-CoSPc的合成工艺进行了如下改进:(1)在制备磺化苯酐的过程中,采用催化磺化法,降低了磺化反应的温度,避免了SO3在高温时的回流。以磺化产物的收率为考察目标,得到最佳磺化反应条件如下:反应物摩尔配比(SO3:PA)为2:1,反应温度为180 ℃,反应时间为3 h,催化剂的加入量为0.02 g·g-1发烟硫酸。(2)采用Na2SO4直接
    
    
    盐析法分离磺化产物,避免了Ca2+和NH4+的加入,并提高了产物的收率。以产物收率及纯度为考察目标,确定了分离过程最佳的Na2SO4浓度为0.15 g(mL-1。(3)在合成反应后期,通过向体系中加入NaOH水溶液的方法,不仅消除了产物中的NH4+,还减弱了发泡现象对反应的影响,产物的收率和纯度亦有所提高。以催化剂的收率及催化活性为考察目标,获得最佳合成条件如下:反应物摩尔比(DSPA:PMDA)为6:1,反应温度为220 ℃,反应时间为1 h。
    为考察bi-CoSPc对高级硫醇的脱除效果,本文以正辛硫醇的催化氧化速率为考察目标,对bi-CoSPc脱臭性能进行了研究。结果表明:在相同反应条件下,与CoSPc相比,bi-CoSPc对正辛硫醇的氧化过程具有更高的催化活性;反应温度的升高,催化剂浓度的增加及碱液浓度的提高,均有利于硫醇的催化氧化反应。
    本文对bi-CoSPc催化氧化正辛硫醇反应动力学进行了初步探讨,根据改变各反应条件所获得的实验结果,确定了正辛硫醇催化氧化反应的速率方程式为:,即对硫醇反应级数为1.07,反应活化能为23.913 KJ·mol-1。
Nowadays, the sweetening process of light oil including liquid-liquid Merox sweetening and fixed-bed Merox sweetening is mostly used in petroleum refining industry. In liquid-liquid Merox sweetening process, two catalyst cobalt polyphthalocyanine (CoPPc) and cobalt sulfonate phthalocyanine (CoSPc) are mainly used. Due to the lower solubility of CoPPc in alkaline, its higher activity is hardly attained. CoSPc can be well dissolved in alkaline, but it converts to dioxide adduct easily in sweetening process, which reduces its activity and makes its service life shorten. CoSPc impregnated on activated charcoal bed is always used in fixed-bed sweetening process, but it is apt to run off and its cost is high. Accordingly, as catalyst of light oil sweetening,the binuclear cobalt sulfonate phthalocyanine (bi-CoSPc) was selected in this paper. Due to the double active centers in a plane, bi-CoSPc not only increases the solubility in alkaline, but also avoids its dimerisation, which expects to increase the catalyst activity in sweetening process.
    The synthesis method of bi-CoSPc was investigated. Disulfo-phthalic anhydride (DSPA) was synthesized by phthalic anhydride (PA) and Bi-CoSPc was prepared by DSPA, pyromellitic and dianhydride (PMDA), urea, and CoCl2. The result showed that, during the synthesis of disulfo-phthalic anhydride (DSPA), the temperature was too high to rise quickly, because of largely refluxing of SO3. The operation of separating sulfonated was complex, and large amounts of by-products were generated in the process. Furthermore, the existence of Ca2+ and NH4+ would influence the application of bi-CoSPc. During the synthesis of bi-CoSPc, the reaction system foamed seriously in final stage, which caused incomplete reaction, and reduced the yield and purity of catalyst.
    The sweeten efficiency of bi-CoSPc was investigated in liquid-liquid Mreox sweetening process. The suitable conditions were that the alkali concentration is 10 wt.%, the catalyst addition is 1.0 g(L-1, the reaction time is 3 min, and the reaction
    
    
    temperature is 40 ℃. The activities of bi-CoSPc, CoSPc and foreign catalyst (ARI 100-EXL) were compared. The results showed that, the efficiency of bi-CoSPc was better than that of CoSPc, and close to the foreign catalyst.
    For the problems mentioned above in preparing bi-CoSPc, the synthesis method was improved as follows: (1) In the synthesis of DSPA, the reaction temperature was lowered by adding catalyst SC, the refluxing of SO3 was avoided. The factors on the yield were researched. The suitable conditions were that, reactant ratio (SO3 : PA) is 2:1, reaction temperature is 180 ℃, reaction time is 3 h, the catalyst addition is 0.02 g·g-1. (2) Adopting Na2SO4 salting out method to separate sulfonated, not only avoided adding the Ca2+ the NH4+, but also increased the yield of DSPA. The suitable concentration of Na2SO4 is 0.15 g·mL-1 for higher yield and purity of DSPA. (3) In the synthesis of bi-CoSPc, adding NaOH solution to reaction system in final stage, not only eliminated the influence of NH4+, but also weakened foaming. So the yield and purity of catalyst could be increased. The suitable conditions were attained: reactant ratio (DSPA:PMDA) is 6:1, reaction temperature is 220 ℃, reaction time is 1 h.
    In order to investigate the activity of bi-CoSPc to the higher thiol oxide, the 1-octanethiol oxidation rate was determined, the result showed that, the rate of 1-octanethiol oxidation increased with rising of reaction temperature, concentration of catalyst, and concentration of alkali. At the same condition, the activity of bi-CoSPc was higher than CoSPc.
    The kinetics of 1-octanethiol catalytic oxidative reaction was preliminarily researched based on the experimental results. The rate of reaction could be described by the equation: , the reaction order of 1-octanethiol is 1.07, and activation energy is 23.913 KJ·mol-1.
引文
[1] 汤海涛, 凌 珑, 王龙延. 含硫原油加工过程中的硫转化规律. 炼油设计. 1998, 29(8):9-15
    [2] 朱根权, 夏道宏, 阙国和. 含硫化合物热解规律的研究. 燃料化学学报. 2000, 28(6):518-521
    [3] 夏道宏, 朱根权, 徐 海, 等. 汽油中硫醇的分离及结构组成分析(2)催化裂化汽油中硫醇的结构与组成. 炼油设计. 1995, 25(2):40-44
    [4] 殷长龙, 夏道宏. 催化裂化汽油中类型硫含量分布. 燃料化学学报. 2001, 29(3):256-258
    [5] 范志明, 柯明, 刘溆蕃. 催化裂化汽油中硫醇性硫和碱性氮化物分布规律的考察. 石油大学学报. 1998, 22(5):86-89
    [6] 田松柏. 活性硫及其在中东原油中的分布. 石油学报(石油加工). 2000, 16(3):9-14
    [7] 张建苏. 燃油硫含量对K3合金热腐蚀的影响. 材料工程. 1997(8):40-41
    [8] 刘长久, 张广林. 石油和石油产品中非烃化合物. 中国石化出版社. 1991
    [9] 夏道宏, 苏贻勋, 钱家麟. 轻质油品脱臭技术进展. 石油化工. 1994, 23(3):201-206
    [10] B.Basu, S.Satapathy, A.K.Bhatnagar. Merox and Related Metal Phthalocyanine Catalyzed Oxidation Processes. Catal Rev Sci Eng. 1993(35):571-609
    [11] 梁 锋, 戴焰林, 郝爱香. 轻质油品脱臭工艺技术进展. 现代化工. 2000, 20(3):11-15
    [12] Horii, Yuji, Onuki, et al. Desulfurization and Denitration of Light Oil by Extraction. US 5,494,572, 1995
    [13] 徐 荣, 杨 林, 尹代益. 增溶碱液萃取法对凝析汽油脱硫的效果. 西南石油学院学报. 1994, 16(3):97-100
    [14] J.J.Grove, J.Mooi. Method for Removing Sulfur-containing Impurities From Hydrocarbons US 4,610,780, 1986
    
    [15] J.H.Schutte, J.Zwart. Autoxidation of Mercpatans Promoted by a Bifunctional Catalyst Prepared by Polymer Attachment of Cobalt Phthalocyanine. J Mol Cata. 1979(5):109-123
    [16] E.M.Ralph, W.W.Herbert, 著. 仲 庆, 严卫翻, 译. 轻质FCC汽油脱硫. 南炼科技. 2000, 7(6):51-60
    [17] 蔡哲斌, 王 运, 石振贵. 用于催化氧化丙硫醇的氧化铜/吸附树脂催化剂. 精细石油化工. 2001(4):42-44
    [18] 川濑義和, 著. 《石油炼制技术便览》编译组, 译. 石油炼制技术便览. 烃加工出版社. 1990
    [19] 刘溆蕃. 石油非烃化学. 石油大学出版社. 1988
    [20] 张晓静, 秦如意, 刘金龙, 等. 催化裂化汽油吸附脱硫工艺研究. 2001, 31(6):44-47
    [21] 夏道宏, 苏贻勋, 钱家麟. 轻质油品脱臭技术进展. 石油化工. 1994, 23(3):201-206
    [22] 朱建华, 吴 振, 刘海超. 油品中硫醇的催化氧化脱除. 江苏化工. 1999, 27(5):1-4
    [23] 夏道宏, 朱根权, 项玉芝, 等. 各种工艺对脱除汽油中硫醇效果的研究. 炼油设计. 1994, 24(4):36-39,61
    [24] 伦学良. 催化裂化汽油脱硫醇工艺技术探讨. 炼油设计. 1991, 21(5):35-39
    [25] R.Frame. Method of Treating a Sour Petroleum Distillate. US 4,298,463, 1980
    [26] 丸井胜, 著. 谢永胜, 王文香, 译. 不用碱进行汽油脱硫的最新技术—无碱性梅洛克斯工艺.国外油田工程. 1997(5):26-28
    [27] 张金诚. 催化氧化法汽油脱硫醇工艺. 炼油. 1998, 3(1):34-42
    [28] 夏道宏, 苏贻勋, 钱家麟. 国内外轻质油品脱臭催化剂研究进展. 石油大学学报. 1995, 19(3):102-108
    [29] C.F.Cullis, J.D.Hopton, D.L.Trimm. Oxidation of Thiols Gas-Liquid Systems Ⅱ Reaction in the Presence of Added Metal Catalysts. J Appl Chem. 1968(18):335-342
    [30] T.J.Wallace, A.Schriesheim, H.Hurwitz, et al. Base-catalyzed Oxidation of Mercaotans in the Presence of Inorganic Transition Metal Complexes. Ind Eng
    
    
    Chem. Process design and development. 1964, 3(3):237-241
    [31] D.Louis, P.Rollomann. Polymer-Bonded Metalloporphyins. J Am Chem Soc. 1975, 97(8):2132-2136
    [32] 沈永嘉. 酞菁的合成与应用. 化学工业出版社. 2000
    [33] T.Buck, E.Preussner, D.Wohrle, et al. Influence of the Metal Type in the Mercaptan Oxidation on Metal Phthalocyanines. J Mol Catal. 1989, 53(3):L17-L19
    [34] 范恩荣. 聚酞菁钴触媒在液态烃脱硫醇中的应用. 天然气与石油. 1995, 13(3):16-22
    [35] 栗洪道, 张小顺, 袁 非. 磺化酞菁钴及若干活化剂脱硫醇活性的研究. 江苏石油化工学院学报. 2001, 13(4):20-22
    [36] 汪 茫, 陈红征, 杨士林. 酞菁类聚合物功能材料研究进展. 功能高分子学报.1994, 17(2):186-194
    [37] 周端午. 炼油脱硫醇催化剂——磺化酞菁钴合成工艺的研究. 化工设计通讯. 1993, 19(4):67-70
    [38] 王 健, 张致贵. 酞菁钴磺酸盐脱硫剂的制备方法. CN 1042636C, 1999
    [39] H.S.Jam, P.Pieter, L.G.Anton. Some Observations on Complexes of a Cobalt Phthalocyanine with Poly(vinylamine) and their Catalytic Activity in the Autoxidation of Thiols. Makromol chem. 1979, 180(9):2341-2350
    [40] 夏道宏, 朱根权, 项玉芝, 等. 汽油脱臭过程中过氧化物的生成及其对脱臭催化剂活性的影响. 石油大学学报(自然科学版). 1996, 20(2):85-89
    [41] R.R.Frame. Catalytic Composite Method of Manufacture and Process for Use. US 4,320,029, 1980
    [42] L.Anabela, C.Carlos, R.Alirio. Studies on the Impregation Step of the Merox Process. Chem Eng Sci. 1987, 42(10):2291-2299
    [43] 宫伟军, 朱光宇, 曾 毅. 哈萨克斯坦原油加工中脱硫问题的研究与实践. 炼油设计. 2001, 31(4):9-12
    [44] 张庆怀. 轻质石油产品脱硫醇技术动向. 安庆石化. 1998, 20(3):1-4
    [45] 柯 明, 范志明, 朱根才, 等. 催化裂化汽油无苛性碱脱臭. 石油炼制与化
    
    
    工. 1995, 26(9):7-9
    [46] 夏道宏, 苏贻勋, 钱家麟. 季铵碱化酞菁钴的合成及其脱硫醇动力学. 石油大学学报. 1994, 18(5):116-120
    [47] 王国辉, 范志明, 柯 明, 等. Na/MgO固体碱催化硫醇氧化反应. 石油化工. 1999(28):149-152
    [48] 朱建华, 王 英, 吴 振, 等. 环境友好新材料的开发微波法研制固体强碱及其在油品脱硫醇中的应用. 无机化学学报. 2000, 16(3):432-437
    [49] 刘海超, 杨锡尧, 冉国朋, 等. 固体碱负载酞菁钴硫醇氧化催化剂的研究.石油化工. 2000, 29(10):742-745
    [50] 郝天臻. 用助溶剂提高Merox工艺脱臭能力. 石油炼制与化工. 1997, 28(11):60-61
    [51] 杨树卿. 双核酞菁钴磺酸盐催化剂的合成方法. CN 1045414A, 1990
    [52] 周 文. PDS技术在天然气脱硫中的应用. 石油与天然气化工. 2001, 30(5):250-252
    [53] 毛晓青, 刘继红, 杨树卿. PDS脱硫技术在焦化行业应用的研究. 东北师大学报(自然科学版). 1995(4):55-59
    [54] 田 波, 李振华, 宋旗跃, 等. NH3-PDS法焦炉气脱硫脱氰的模拟研究燃料化学学报. 1994, 22(3):289-295
    [55] 唐代华, 王小兵, 甄 珍, 等. 一种合成平面双核金属酞菁的新方法. 无机化学学报. 1999, 15(6):821-824
    [56] 中华人民共和国国家标准馏分燃料中硫醇硫测定法(电位滴定法). GB 1792-88. 1982
    [57] 孙丛芳, 刘 萍. 磺化苯酐的合成. 青岛教育学院学报. 2001, 14(2):41-42
    [58] 谢晶曦, 常俊标, 王绪明. 红外光谱在有机化学和药物化学中的应用. 科学出版社. 2001
    [59] 张致贵, 何红燕. 酞菁钴磺酸盐的制备、结构表征及催化性能. 吉林大学自然科学学报. 1995(2):107-108
    [60] 舒运贵. 轻质油品脱臭催化剂——液态磺化酞菁钴的合成及应用. 武汉化工. 1990(1):7-10,16
    
    [61] 吴贵生, 于治福, 于淑政, 等. 试验设计与数据处理. 冶金工业出版社. 1997
    [62] 唐培堃. 精细有机合成化学及工艺学. 天津大学出版社. 1993
    [63] 奚 强, 刘常坤, 等. 酞菁钴催化氧化脱硫的机理研究. 石油学报(石油加工). 1998, 14(2):97-99
    [64] 陈 彬, 邵 允, 裴东光, 等. PDS催化脱硫反应机理的研究(I). 东北师大学报(自然科学版). 1990(2):121-126,134
    [65] 陈 彬, 王晓玉, 邵 允, 等. PDS催化脱硫反应机理的研究(III)氧与钴离子键合的本质. 东北师大学报(自然科学版). 1990(2):131-133
    [66] 陈 彬, 毛晓青, 刘继红, 等. PDS脱硫脱氰反应机理的研究. 石油与天然气化工. 1995, 24(2):75-79,100

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700