用户名: 密码: 验证码:
对2005年春季黄渤海一次海雾的观测分析与数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对2005年3月27日黄渤海海上的一次海雾事件进行了观测分析及数值模拟研究。利用GOES-9(Geostationary Operational Environmental Satellite), MODIS (Moderate Resolution Imaging Spectroradiometer), NOAA (National Oceanic and Atmospheric Administration)和风云1D可见光卫星云图对海雾发生的范围、形态、及变化进行了观测。海雾于2005年3月27日早晨发生,雾区面积大约为11000平方公里,持续24小时左右。此次海雾对黄渤海海上能见度影响很大。海雾持续过程中,面积东西向逐渐缩减,最后演变成S形状。配合MICAPS (Meteorological Information Comprehensive Analysis and Process System)地面观测资料,对海雾的发生进行了确认。利用地面站点观测资料,了解到海雾发生时能见度主要维持在2 km以下,露点温度与温度之差和能见度的变化成正比。
     利用美国国家环境预报中心(National Centers for Environmental Prediction)提供的FNL (Final analysis data)资料,对海雾发生时的天气形势,气海温差和水汽的南北输送进行了分析。分析表明,海雾发生时天气形势稳定,贝加尔湖以东地区有冷高压形成;2 m气温与该处露点温度非常接近,空气湿度较大,温差小值区域与海雾发生区域相似;2 m处露点温度与海表面表皮温度差场说进一步说明,海面在接近露点温度的情况下,才可以有海雾生成;气海温差在黄渤海地区普遍>2 oC,海雾发生的中心地区气海温差最高达到5 oC。从探空资料(白翎岛,乌山,丹东,大连,青岛,射阳站)分析可看出垂直方向上存在逆温层结,而水汽输送恰恰以此逆温层为分界,说明逆温层结抑制底层水汽蒸发,起到将水汽输送固定在低层的作用。
     之后,本文利用科罗拉多大学开发的RAMS(Regional Atmospheric Modeling System)数值模式对此次海雾事件进行了数值模拟,并计算了水平能见度。结果表明:能见度水平分布与卫星云图所显示的雾区分部吻合较好,但模拟得到的雾区较大,海雾的出现时间较实际观测出现时间延迟4小时左右。大连站点模拟能见度的变化与地面观测能见度值的变化趋势相一致,模拟能见度值显著偏小。此外根据模式结果分析了海表面温度与露点温的关系,并由此设计了SST (Sea Surface Temperature)敏感试验。分别对海温进行升高2 oC、升高2.5 oC、降
A dense sea fog happened at 27th Mar 2005. The images of GOES(Geostationary Operational Environmental Satellite), NOAA (National Oceanic and Atmospheric Administration), MODIS ( Moderate Resolution Imaging Spectroradiometer) and FY-1D and other available data such as FNL (Final analysis data) of NCEP (National Centers for Environmental Prediction), MICAPS (Meteorological Information Comprehensive Analysis and Process System), surface observation data and sounding data are used to recognize and analyze the fog. Satellite images provide information on the area and the shape of the sea fog; MICAPS and surface observation data show the visibility and the specific humidity of the sea fog. It can be seen that this sea fog affected visibility on the sea and the coast cities very seriously. FNL is used to analyze the synoptic situation, the temperature difference between the sea surface and the air two meters above the surface and the transport of specific humidity. It shows by the sounding data that there is inversion layer under 900 hPa and the vertical structure is stable. Then, RAMS model is used to simulate this sea fog event. The distribution of simulated horizontal visibility is similar to the fog region on the visible satellite images. The evolution of the visibility at Dalian station is also close to the observed visibility there. The experiments of SST (Sea Surface Temperature) sensibility show that a temperature difference of more than 2 oC between the sea surface and the air two meters above the surface is necessary to the formation of sea fog. The experiments also suggest that a low SST will limit the development of sea fog.
引文
陈伟, 周红妹, 袁志康, 葛伟强, 2003: 基于气象卫星分行纹理的云雾分离研究. 自然灾害学报, 12(2), 133-139.
    陈伟, 袁志康, 周红妹, 卢晓姗, 2004: GMS25 红外图像上夜间雾的分离实验. 气象科学, 24(2), 193-198.
    傅刚, 王菁茜, 张美根, 郭敬天, 郭明克, 郭可彩, 2004: 一次黄海海雾事件的观测与数值模拟研究. 中国海洋大学学报, 34(5), 720-726.
    胡瑞金, 周发琇, 1997: 海雾过程中海洋气象条件影响数值研究. 青岛海洋大学学报, 27(3), 282-289.
    井传才, 1980: 青岛近海海雾的初步探讨. 气象, 65(5), 6-8.
    梁卫芳, 侯忠新, 2001: 青岛大雾的特征与预报. 山东气象, 21(2), 12.
    马慧云, 2005: 基于MODIS卫星数据的平流雾检测研究. 武汉大学学报信息科学版, 30(2), 143-145.
    王彬华, 1983: 海雾. 海洋出版社, 北京,352pp.
    王志强,王静爱,2004: 关于雾灾几个相关问题的探讨. 自然灾害学报,Vol.13, No2, 134–139.
    Bendix, J., 1995: Determination of fog horizontal visibility by means of NOAA-AVHRR. Proeeding of IGARSS'95 (Firenze), 1847-1849.
    Cotton, William R., Gregory Thompson and Paul W. Mieike Jr., 1994: Real-Time Mesoscale Prediction on workstations. Bulletin of the American Meteorological Society, Vol. 75, No. 3, 349–362.
    Cotton, William R., 2003: Cloud Models: Their Evolution and Future Challenges. Meteorological Monographs, Vol. 29, No. 51, 95–95.
    Carrió, G. G., H. Jiang and W. R. Cotton. 2005: Impact of Aerosol Intrusions on Arctic Boundary Layer Clouds. Part II: Sea Ice Melting Rates. Journal of the Atmospheric Sciences, Vol. 62, No. 9, 3094–3105.
    Duynkerke, Peter G., 1991: Radiation Fog: A Comparison of Model Simulation with Detailed Observations. Monthly Weather Review, 119, 324–341.
    Eldridge, Ralph G., 1961: A Few Fog Drop-size Distributions. Journal of the Atmospheric Sciences, Vol.18, No.5, 671–676.
    Gunn, K.L.S. and J.S. Marshall, 1958: The Distribution with Size of Aggregate Snowflakes. Journal of Meteorology, Vol.15, 452-461.
    Gerber, H., 1991: Supersaturation and Droplet Spectral Evolution in Fog. Journal of the Atmospheric Sciences, Vol.48, No.24, 2569–2588.
    Golding, B.W., 1993: A Study of the Influence of Terrain on Fog Development. Monthly Weather Review, 121, 2529–2541.
    Girard, Eric and Jean-Pierre Blanchet, 2001: Simulation of Arctic Diamond Dust, Ice Fog, and Thin Stratus Using an Explicit Aerosol–Cloud–Radiation Model. Journal of the Atmospheric Sciences, Vol.58, No.10, 1199–1221.
    Koziara, Michael C., Robert J. Renard and William J. Thompson, 1983: Estimating Marine Fog Probability Using a Model Output Statistics Scheme. Monthly Weather Review, 111, 2333–2340.
    Kunkel, Bruce A., 1984: Parameterization of Droplet Terminal Velocity and Extinction Coefficient in Fog Models. Journal of Applied Meteorology, Vol.23, No.1, 34–41.
    Li, J., R. A. Maddox, X. Gao, S. Sorooshian and K. Hsu., 2003: A Numerical Investigation of Storm Structure and Evolution during the July 1999 Las Vegas Flash Flood. Monthly Weather Review: Vol. 131, No. 9, 2038–2059.
    Lewis, J. M., D. Kora in and K. T. Redmond, 2004: Sea Fog Research in the United Kingdom and United States: A Historical Essay Including Outlook. Bulletin of the American Meteorological Society, 85, 395–408.
    Marshall, J.S. and W.M. Palmer, 1948: The distribution of raindrops with size. Journal of Meteorology, Vol.5, 165-166.
    Musson-Genon, Luc, 1987: Numerical Simulation of a Fog Event with a One-dimensional Boundary Layer Model. Monthly Weather Review, 115, 592–607.
    Neumann, J. and H. Flohn., 1988: Great Historical Events That Were Significantly Affected by the Weather: Part 8, Germany's War on the Soviet Union, 1941-45. II. Some Important Weather Forecasts, 1942-45. Bulletin of the American Meteorological Society, Vol.69, No.7, 730–735.
    Pinnick, R.G., D.L. Hoihjelle, G. Fernandez, E.B. Stenmark, J.D. Lindberg, G.B. Hoidale and S.G. Jennings, 1978: Vertical Structure in Atmospheric Fog and Haze and Its Effects on Visible and Infrared Extinction. Journal of the Atmospheric Sciences, Vol.35, No.10, 2020–2032.
    Pagowski, Mariusz, Ismail Gultepe and Patrick King, 2004: Analysis and Modeling of an Extremely Dense Fog Event in Southern Ontario. Journal of Applied Meteorology, 43, 3–16.
    Rutledge, S. A., and P. V. Hobbs, 1983: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones, Part VIII: A model for the “seeder-feeder” process in warm-frontal rainbands. Journal of the Atmospheric Sciences, 40, 1185-1206.
    Stallabrass, J. R., 1985: Measurements of the concentration of falling snow. Preprints, Snow Property Measurements workshop, Lake Louise, AB, Canada, National Research Council of Canada, 389-410.
    Schemenauer, Robert S. and Pilar Cereceda, 1992: The Quality of Fog Water Collected for Domestic and Agricultural Use in Chile. Journal of Applied Meteorology, Vol.31, No.3, 275–290.
    Stoelinga, M. T. and Thomas T. W., 1999: Nonhydrostatic, Mesobeta-Scale Model Simulations of Cloud Ceiling and Visibility for an East Coast Winter Precipitation Event. Journal of Applied Meteorology, 38, 385–404.
    Slemmer, J. 2004: Study Of Dense Fog at the Salt Lake City International Airport and Its Impacts to Aviation. Western Region Technical Attachment, March 3, No.04-01.
    Turner, R. and Tony Hurst. 2001: Factors Influencing Volcanic Ash Dispersal from the 1995 and 1996 Eruptions of Mount Ruapehu, New Zealand. Journal of Applied Meteorology: Vol. 40, No. 1, 56–69.
    Vukicevic, T., T. Greenwald, M. Zupanski, D. Zupanski, T. Vonder Haar and A. S. Jones. 2004: Mesoscale Cloud State Estimation from Visible and Infrared Satellite Radiances. Monthly Weather Review: Vol. 132, No. 12, 3066–3077.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700