用户名: 密码: 验证码:
不同类型营养盐库对胶州湾浮游植物生长的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文应用稀释法研究了胶州湾一年三个典型站位和八大峡围隔实验中细胞外源的,细胞内源的及通过异养生物再矿化的营养盐库对浮游植物生长的影响和限制作用。
     结果表明:在湾外,各个月份浮游植物的最大生长率平均值最高,为1.10d-1,浮游动物的摄食率居中,为0.71d-1。浮游植物的生长受到营养盐的限制较湾中央和港口大,其中细胞内源的P库在1月份(KI=2.18)和9月份(KI=2.44)对浮游植物的生长的限制较大,再矿化的N库在5月份(KR=1.47)和9月份(KR=1.82)对浮游植物的生长有限制作用,细胞内源的N库在1月份(KI=1.31),细胞外源的N库在9月份(KE=1.09)对浮游植物的生长也有限制作用。
     在湾中央,各个月份浮游植物的最大生长率平均值在居中,为0.87d-1,摄食率的最高,为0.81d-1。湾中央受到的营养盐的限制程度在三个站位居中,其中在11月份细胞内源的P库(KI=3.58)对浮游植物的生长的影响达到最大,其次是9月份再矿化的P库(KR=1.41)。
     在港口,各月份浮游植物的最大生长率和浮游动物的摄食率的平均值都最低,分别为0.63d-1和0.61d-1。港口受到营养盐的限制程度总体低于湾外和湾中央,主要是细胞内源的营养盐受限,其中在1月份,细胞内源的Si库(KI=2.21)对浮游植物的影响最大,在3月份细胞内源的N库(KI=1.49)和P库(KI=1.34)对浮游植物生长也有一定的影响。
     比较一周年的数据,三个站位的浮游植物在9月份受到N、P、Si的三种营养盐库的影响程度最大,其次是1月份和11月份,在3月、5月和7月份,受到的营养盐的限制较小。
     对八大峡的四组围隔实验的三个阶段比较可以发现,再矿化的营养盐库对浮游植物生长的影响最大,例如:在对照围隔实验的初始时期,再矿化的P库(KR=10.34)、N库(KR=6.73)和Si库(KR=7.02)对浮游植物生长的限制程度都较高;在加氮的围隔中,再矿化的N库在实验中、后期对浮游植物生长的
The source and significance of three nutrients, nitrogen, phosphorous and silicon, were investigated by a modified dilution method performed on sea water samples from three stations of the Jiaozhou Bay for one year and the Badaxia Mesocosm in Sep 2004. The method, brought forward by Andersen dilution experiments, accounts for the phytoplankton growth rate, microzooplankton grazing rate and also quantifying internal and external nutrient pools, as well as nutrient supplied through remineralization by heterotrophs.
     The results indicated that outside the bay during one year the average of the maximum growth rate of the phytoplankton which is 1.10d-1 is the largest, the average of the microzooplankton grazing rate which is 0.71d-1 is in middle at the three stations. The nutrient limited degree is higher than the other two stations, the internal nutrient phosphorus pools in Jan (KI=2.18) and in Sep (KI=2.44) has heavy influence for the growth of the phytoplankton, the remineralized nitrogen pools in May (KR=1.47) and in Sep (KR=1.82) also have efficient affections for the growth of the phytoplankton, the internal nitrogen pool in Jan (KI=1.31), the external nitrogen pool in Sep (KE=1.09), are also demanded by the growth of the phytoplankton.
     Inside the bay among each month the average of the maximum growth rates of phytoplankton is in middle which is 0.87d-1, the average of microzooplankton grazing rates is the largest which is 0.81d-1 at the three stations. The nutrient limited degree is in middle at the three stations, in Nov the internal nutrient phosphorus pool (KI=3.58) is the largest demanded by the growth of the phytoplankton, the second is the remineralized phosphorus pool (KR=1.41) in Sep.
     In the harbor during one year the average of the maximum growth rates of the phytoplankton and microzooplankton grazing rates both are the lowest , which are
引文
1. Andersen T,Schartau A K L,Paasche E. Quantifying extenal and internal nitrogen and phosphorouss pools,as well as nitrogen and phosphorous supplied through remineralilzation, in coastal marine plankton by means of a dilution technique. Marine Ecology Progress Series,1991,69:67-80
    2. Armstrong F A J,Stearns C R,Strickland J D H. The measurement of upwelling and subsequent biological processes by means of the Technicon AutoAnalyzer and associated equipment. Deep-Sea Research,1967,14:381-389
    3. Boyd P W,Law C S,Wong C S et al. The decline and fate of an iron-induced subarctic phytoplankton bloom. Nature,2004,428:549-553
    4. Boyd P W,Watso A J et al. A mesoscale phytoplankton bloom in the polar Sourthern Ocean stimulated by iron fertilization. Nature,2000,407:695-702
    5. Brzezinski M A. The Si:C:N ratio of marine diatoms interspecific variability and the effect of some environmental variables,Journal of Pbycology,1985,21:347-357
    6. Burkill P H,Mantoura R F C,Llewellyn C A et al. Microzooplankton grazing and selectivity of phytoplankton in coastal waters. Marine.Biology,1987,93:581-590
    7. Christian G,James E C,Stephen W H,Brian E C. Dynamics of nutrient cycling and related benthic nutrient and oxygen fluxes during a spring phytoplankton bloom in South San Francisco Bay (USA). Marine Ecology Progress Series,2000,197:67-80
    8. Coale K H,Fitzwater S E,Gordon R M et al. Control of community growth and export production by upwelled iron in the equatorial Pacific Ocean. Nature,1996a,379:621-624
    9. Coale K H,Johnson K S,Fitzwater S E et al. A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean. Nature,1996b,379:621-624
    10. Conley D J,Malone T C. Annual cycle of dissolved silicate in Chesapeark Bay: implications for the production and fate of phytoplankton biomass , Marine Ecology Progess Series ,1992,81:121-128
    11. Dortch Q,Whitledge T E. Does nitrogen or silicon limit phytoplankton production in the Mississippi River plume and nearly regions? Continental Shelf Research,1992,12(11):1293-1309
    12. Dugdale R C, Wilkerson F P. Silicate regulation of the new production in the eastern equatorial Pacific upwelling. Nature 391:270-273
    13. Dugdale R C,Goering J J. Uptake of new and regenerated forms of nitrogen in primary productivity. Limnol.Oceanogr. 1967,12:196-206.
    14. Edmond J M,Spivacl A,Crant B C et al. Chemical dynamics of the Changjiang Estuary. Continental Shelf Research,1985,4:17-36
    15. Eppley R W,Reid F M H,Stickland J D H. Estimates of phytoplankton crop size, growth rate and primary production. Bulletin of the Scripps Institution of Oceanography of the University of California,1970,17: 33-42
    16. Eppley R,Peterson B. Particulate organic matter flux and planktonic new production in the deep ocean. Nature,1979,282:677-680.
    17. Escaravage V. The response of phytoplankton communities to phosphorus input reduction in mesocom experiment. J.Exp.Mar.Biol.Ecol,1996,188(1):55-79
    18. Fisher TR,Peele ER,Ammerman JW,et al. Nutrient limitation in Chesapeake Bay. Mar Ecol Prog Ser,1992,82:51-63
    19. Frost B W. Phytoplankton bloom on iron rations. Nature,1996,383:475-476
    20. Gallegos C L. Microzooplankton grazing on phytoplankton in the Rhode River, Maryland: nonlinear feeding kinetics. Marine Ecology Progress Series,1989,57:23-33
    21. Gifford D J. Impact of grazing by microzooplankton in the Northwest Arm of Halifax Harbour,Nova Scotia. Marine Ecology Progress Series,1988,47:249-258
    22. Glibert P M. Primary productivity and pelagic nitrogen cycling. In: Blackburn,T.H.,Sorensen.J.(eds.) Nitrogen cycling in coastal marine environments. Wiley,Chichester,1988,3-31
    23. Hager S W,Gordon L I,Park P K. A practical manual for use of the Technicon Autoanalyzer in seawater nutrient analyses. Department of Oceanography, Oregon State University, Corvallis OSU Ref1968,68-33,p 1-31
    24. Harrison P J,Turpin D H. The manipulation of physical chemical and biological factors to select species from natural phytoplankton communities. In: Grice G. D. and M. R. Reeve eds. Mesocosm New York: Springer Verlag.1982:275-289
    25. Harrison W G. Uptake and recycling pf soluble reactive phosphorous by marine microplankton. Marine Ecology Progress Series,1983,10:127-135
    26. Hecky R E,Kilham P. Nutrient Limitation of Phytoplankton in Freshwater and Marine Environments: A Review of Recent Evidence on the Effects of Enrichment. Limnology and Oceanography,1988, 33(4,Part 2):796-822.
    27. Hillebrand H, Sommer U. Nutrient limitation of phytoplankton in freshwater and marine environments a review of recent evidence on the effects of enrichment. Limnol Oceanogr. 1988,33:796-822
    28. Justic D,Rabalais N,Turner R E,et al. Changes in nutrient structure of river-dominated coastal waters storebiometric nutrient balance and its consequences. Estuarine ,Coastal and shelf Science,1995, 40:339-356
    29. Kilham S S. Silicon and phosphorus growth kinetics and competitive in interactions between Stephanodiscus minutus and Synedrasp. Verhandlungen des Internationalen Vereins Hegotiations Int Club Theor Appl Limnol, 1984,22:435-439
    30. Knap A,Michaels A,Close A,Ducklow H,Dickson A. (eds). Protocols for the Joint Global Ocean Flux Study (JGOFS) Core Measurements. UNESCO,1996,1-170
    31. Landry M R, Kirshtein J, Constantinou J. A refined dilution technique for measuring the community grazing impact of microzooplankton, with experimental tests in the central equatorial Pacific. Marine Ecology Progress Series.1995,120:53-63
    32. Landry M R,Hassett R P. Estimating the grazing impact of marine microzooplankton. Marine Biology,1982,67:283-288
    33. Malone T C. Algal Size. In: Morris I ed. The Physiological Ecology of Phytoplankton. Berkeley: University of California Press,1980,433-463
    34. Marino D, Alfani A M, Zingone A, 1977. A preliminary account on the annual cycle of Uterm?hl phytoplankton in a Mediterranean brackish-water lagoon. Rapp Comm int Mer Me'dit, 24(6):111-114
    35. Martin J H,Fitzwater S B. Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic. Nature,1988,331:341-343
    36. Martin JH,Coale KH,Johnson KS et al. Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature,1994,371:123-129.
    37. Martin JH. Iron as a limitation factor in oceanic productivity In:Falkowski PG & Woodhead AD eds. Primiary Productivity and Biogeochemical Cycles in the Sea. New York: Plenum Press. 1992,123-137
    38. Moigis A G,Gocke K. Primary production of phytoplankton estimated by means of the dilution method in coastal waters. Journal of Plankton Research,2003,25: 1291-1300
    39. Nixon S. W. Coastal marine eutrophication: A definition, social causes and future concerns. Ophelia. 1995,41:199-219
    40. Officer C B,Ryther J H. The possible importance of silicon in marine eutropbication. Marine Ecology Progress Series,1980,3:83-91
    41. Paranjape M A. Grazing by microzooplankton in the eastern Canadian arctic in summer 1983. Marine Ecology Progress. Ser. 1987, 40: 239-246
    42. Parsons T R, Maita Y, Lalli C M. A Manual of Chemical and Biological Methods for Seawater Analysis. Oxford: Pergamon,1984,1-173
    43. Putt M,Stoecker D K. An experimentally determined carbon: volume ratio for marine oligotrichous ciliates from estuarine and coastal waters. Limnology and Oceanography,1989, 34: 1097-1103
    44. Rabitti S, Bianchi F, Boldrin A et al. Particulate matter and phytoplankton in the Ionian Sea. Oceanologica Acta,1994,17(3):297-307
    45. Redfield A C,Ketechum B H,Rechards P. The influence of organisms on the composition of seawater In:Hill M N ed. The Sea. Vol.2. John Wiley ,New York ,1963,26-77
    46. Shen Zhiliang. Historical Changes in Nutrient Structure and its Influences on Phytoplantkon Composition in Jiaozhou Bay. Estuarine, Coastal and Shelf Science,2001,52: 211-224
    47. Smayda T J Novel and nuisance phytoplankton blooms in the sea: evidence for a global epidemic. In: Craneli E, Smderstroen B.Edler R et al ed..Toxic marine phytoplankton. Elsevier Science, New York,1990,29-40
    48. Smith R A,Alexander R.B,Wolman M G. Water quality trends in the nation’s rivers. Science,1987,235: 1607-1615
    49. Sommer U. Nutrient competition between phytoplankton in multi species chemostat experiments. Arch Hydrobiol, 1983,96:399-416
    50. Sun Jun, Liu Dongyan, Qian Shuben. Estimating biomass of phytoplankton in the Jiaozhou Bay. I. Phytoplankton biomass estimated from cell volume and plasma volume. Acta. Oceanologica. Sinica,2000,19(2): 97-110
    51. Sun Jun, Liu Dongyan. Geometric models for calculating cell biovolume and surface area for phytoplankton. Journal of Plankton Research,2003,25(11): 1331-1346 (SCI)
    52. Thomas W H. Surface nitrogenous nutrients and phytoplankton in the northeastern tropical Pacific Ocean. Limnology and Oceanography,1966,11:393-400.
    53. Tilman D, Stemer R W. Invasions of equilibria: Tests of resource competition using two species of algae. Oecologia, 1984,61:197-200
    54. Tilman D. Test of resource competition theory using four species of Lake Michigan algae. Ecology, 1981,62:802-815
    55. Tomas C R. Identifying marine phytoplankton. Academic Press, San Diego,USA,1997.
    56. Treguer P D M, Nelson A J, Van B et al. The silica balance in the world ocean. Science,1995,268: 375-379
    57. Turner R E,Rabalais N N. Changes in Mississippi River water quality this century-implications of coastal fond webs. Bio-science,1991,41:140-147
    58. Uterm?hl H. Zur Vervolkommung der quantitativen Phytoplankton-Methodik. Mitt. int. Ver. Theor. angew. Limnol,1958, 9: 1-38
    59. Utrtm?hl H. Zur vervolkommung der quantitativen phytoplankton methodik. Trans Int Verein Theor Appl Limnol, 1958,9:1-38
    60. Uye S, Nagano N, Tamaki H. Geographical and seasonal variations in abundance, biomass and estimated production rates of microzooplankton in the Inland Sea of Japan. Journal of Oceanography,1996,52: 689-703
    61. van Bennekom A J,Wetsteijn FJ.The winter distribution of nutrients in the Southern Bight of the North Sea (1961-1978) and in the estuaries of the Scheldt and the Rhine/Mense. Neterland Journal of Sea Research.,1990, 25:75-87
    62. Wood E D,Armstrong F A J,Richards F A. Determination of nitrate in seawater by cadmium-copper reduction to nitrite. J Mar Biol Ass UK,1967,47: 23-31
    63. Yamaji I. Illustrations of the Marine Plankton of Japan. Hoikusha Publishing Co.Ltd.Osaka,1991.
    64. Zhang Liyong,Sun Jun,Liu Dongyan et al. Studies on growth rate and grazing mortality rate by microzooplankton of size-fractionated phytoplankton in spring and summer in the Jiaozhou Bay,China. Acta Oceanologica Sinica,2005,24(2): 85-101
    65. Zhang C, Zou J Z. Recent progress of the study on harmful algal blooms in China: An overview. In: Zou J Z, ed. Sources, Transfer and Environmental Impact of Pollutants in the Coastal and Estuarine Area of China. Ocean Press,105-110
    66. 顾宏勘,熊孝先,刘明星等. 长江口附近氮的地球化学、I 长江口附近海水中的硝酸盐. 山东海洋学院,1981,11(4):37-46
    67. 胡明辉,杨逸萍,徐春林等,1989,长江口浮游植物生长得磷限制. 海洋学报,1989,11(4):439-443
    68. 蓝仁训等. 青岛市志水产志,北京:新华出版社,1995,142
    69. 李超伦,孙松,吉鹏等. 南极普里兹湾边缘浮冰区微型浮游动物的摄食及其氮的排泄. 海洋与湖沼, 2000,31(6):657-663
    70. 李瑞香,王保栋,王宗灵等. 青岛奥运帆船赛区理化、生物要素现状及富营养化诱发赤潮的围隔实验. 应用生态学报,2004,24(4):837-842
    71. 李瑞香,朱明远,陈尚等. 围隔生态系内浮游植物对富磷的响应.生态学报,2001,21:(4):603-607
    72. 李瑞香,朱明远,王宗灵等. 东海两种赤潮生物种间竞争的围隔实验. 应用生态学报,2003,14(7):1049-1054
    73. 李文权,蔡阿根等,光和营养盐对三角褐指藻生化组成的影响. 中国环境科学,1994,14:185-189。
    74. 李文权,黄贤芒等,四种海洋单胞藻生化组成的环境因子效应研究. 海洋学报,1999,21:59-65。
    75. 李学刚,宋金明,袁华茂等,胶州湾沉积物中高生源硅含量的发现--胶州湾浮游植物生长硅限制的证据. 海洋与湖沼,2005,36(6):572-579
    76. 林昱,庄栋法,陈孝麟等. 初析赤潮成因研究的围隔实验结果Ⅱ.浮游植物群落演替与甲藻赤潮.应用生态学报,1994,5(3):314-318
    77. 林昱等.围隔生态系内富营养引起赤潮的初步研究. 海洋与湖沼,1992,23(3):312-317
    78. 刘东艳,孙军,不同氮磷比对中肋骨条藻生长特性的影响. 海洋湖沼通报,2002a,2:39-43
    79. 刘东艳,孙军,钱树本. 胶州湾浮游植物研究Ⅱ环境因子对浮游植物群落结构变化的影响.青岛海洋大学学报,2002b,32(3):415-421
    80. 刘东艳,孙军,唐优才等. 胶州湾北部水域浮游植物研究 I-物种组成和数量丰度变化. 青岛海洋大学学报,2002c,32(1)67-72
    81. 青岛年鉴编辑部,青岛年鉴,北京:中华书局,1998,296-302
    82. 青岛市环保局,胶州湾邻近海域赤潮发生调查报告.1999b,8 页
    83. 青岛市环保局,青岛市环境质量报告书(1995-1999).1999a,66 页
    84. 曲克明,陈碧鹃,袁有宪等.氮磷营养盐影响海水浮游硅藻种群组成的初步研究.应用生态学报,2000,11(3):445-448
    85. 沈志良,陆家平,刘兴俊等. 长江口营养盐的分布特征及三峡工程对其的影响. 海洋科学集刊,1992,33:109-129
    86. 沈志良. 渤海湾及其东部水域的水化学要素. 海洋科学集刊,1999,41:51-59
    87. 宋金明,罗延馨,李鹏程. 渤海沉积物—海水界面附近磷与硅的生物地球化学循环模式.海洋科学,2000,24(12):30-32
    88. 孙军, John Dawson, 刘东艳. 夏季胶州湾微型浮游动物摄食初步研究. 应用生态学报, 2004b,15(7):1245-1252
    89. 孙军, 刘东艳, 钱树本. 一种海洋浮游植物定量研究分析方法——Uterm?hl 方法的介绍及其改进. 黄渤海海洋, 2002a,20(2):105-112
    90. 孙军,刘东艳,钱树本. 浮游植物生物量研究:Ⅱ.胶州湾网采浮游植物细胞体积转换生物量. 海洋学报 2000a. 22:102-109
    91. 孙军,刘东艳,钱树本. 浮游植物生物量研究Ⅲ. 海洋学报 2000b. 增刊:293-299
    92. 孙军,刘东艳,钱树本. 浮游植物生物量研究 I 浮游植物生物量细胞体积转化法. 海洋学报,1999,21(2):75-85
    93. 孙军,刘东艳,王宗灵等. 春季赤潮频发期东海小型浮游动物摄食研究. 应用生态学报,2003b,14(7):1073-1080
    94. 孙军,刘东艳. 赤潮生物浮动弯角藻名称小记. 海洋科学, 2003a, 27(6):45-46
    95. 孙军,刘东艳. 中国海区常见浮游植物种名更改初步意见,海洋与湖沼, 2002b, 33(3):271-286
    96. 孙军,刘东艳等. 不同氮磷比率对青岛大扁藻、新月柱鞘藻和米氏凯伦藻生长影响及其生存策略研究. 应用生态学报,2004a,15(11):2122-2126
    97. 孙军,宋秀贤,殷克东等. 香港水域夏季微型浮游动物摄食研究. 生态学报,2003c,23(4):712-724
    98. 王保栋,黄海和东海营养盐分布及其对浮游植物的限制. 应用生态学报,2003,14(7):1122-1126
    99. 王勇,焦念志,北黄海浮游植物营养盐限制的初步研究. 海洋与湖沼,1999,30(5):512-518
    100. 王勇,焦念志,胶州湾浮游植物对营养盐添加的响应关系. 海洋科学,2002,26(No.4):8-12
    101. 王勇,赵澎,单宝田.胶州湾营养盐限制浮游植物生长的初步模拟现场实验研究. 海洋科学, 26(10):55-59
    102. 杨东方,李宏,张越美等,浅析浮游植物生长的营养盐限制及其判断方法. 海洋科学,2000.24(12):47-50
    103. 张均顺,沈志良. 胶州湾营养盐结构变化的研究. 海洋与湖沼,1997,28(5):529-535
    104. 周名江,颜天,邹景忠. 长江口邻近海域赤潮发生基本特征初探. 应用生态学报,2003,14(7):1031-1038
    105. 周名江,朱明远,张经,中国赤潮的发生趋势和研究进展. 生命科学,2001,13(2):54-59
    106. 邹景忠,中国海洋志,大象出版社,2003.
    107. 邹景忠等,海洋环境科学,济南:山东教育出版社, 2004.
    108. 邹立,张经,渤海春季营养盐限制的现场试验. 海洋与湖沼,2001,32(No.16):672-678

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700