用户名: 密码: 验证码:
苯并(a)芘在黑鲷(Sparus macrocephalus)体内代谢转化机制的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
BaP在海洋鱼类体内代谢转化机制的研究一直是生态毒理学研究的热点和难点之一。本研究采用化学、生态毒理学和生物化学相结合的方法,通过分析黑鲷生物标志物(肝脏EROD、GST活性和肝脏中BaP的蓄积浓度以及胆汁中BaP代谢产物3-OH BaP浓度)的变化,研究BaP对黑鲷产生的生物效应,并初步探讨BaP在黑鲷体内的代谢转化机制;现场实验比较研究了具有不同生活习性和食性的两种鱼-黑鲷和黄斑篮子鱼对BaP胁迫的反应情况,探讨了养殖鱼类对BaP污染的生物指示作用。取得如下的成果:
     1.黑鲷暴露较低浓度BaP (0.5μg/L和1.0μg/L)时:在暴露期间,黑鲷肝脏EROD活性随肝脏中BaP的蓄积浓度不断增加而不断被诱导,在暴露2d后达到最高值,然后有下降的变化趋势,两者间的变化具有显著的正相关性;而GST活性在暴露期间变化不大,胆汁中3-OH BaP浓度在暴露早期变化不大,但在后期有逐渐增加的趋势。表明鱼体暴露较低浓度时,肝脏CYP1A反应被不断的激活,并起到解毒作用,防止了过度的基因毒性发生。
     2.黑鲷暴露较高浓度BaP (2.0μg/L和5.0μg/L)时:黑鲷肝脏中BaP蓄积浓度急剧升高,在12h达到峰值,然后有不断下降的趋势,而此时3-OH BaP的浓度却急剧升高,在4-7d达到峰值;EROD和GST均被显著诱导,EROD活性被极显著诱导的时间提前于低浓度暴露,但暴露2d和7d后GST与EROD活性呈不断下降的变化趋势。这表明黑鲷高浓度BaP的暴露和蓄积可以提高肝脏对BaP的代谢转化率,但肝脏CYP1A受到高浓度BaP和其代谢产物刺激时,高浓度化合物对酶的毒性作用会导致活性降低,造成肝脏受到一定程度的损伤。
     3.黑鲷BaP暴露后的净化实验表明,本次实验的暴露浓度没有超出严重损伤黑鲷自身恢复能力的浓度范围;也说明鱼体被低浓度BaP污染后,通过净化、自身调节和修复,MFO系统可基本恢复至正常水平。
     4.现场实验研究表明,黑鲷肝脏EROD活性和胆汁中3-OH BaP比黄斑篮子鱼更适合指示BaP污染;在现场监测中,胆汁中代谢产物比肝脏中污染物的含量更适于作为监测指标。
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitoust pollutants in the marine environment and many PAHs are carcinogenic and mutagenic. The research on the metabolic mechanism of Benzo(a)pyrene (BaP) in marine fish is one of the hotspots and difficulties in the ecotoxicological research area. This study integrated the chemical, ecotoxicological and biochemical methods to discuss the mechanism of metabolism and biotransformation of black porgy (Sparus macrocephalus) exposed to BaP primarily. Meanwhile, field experimental study has been done to investigate the different susceptibility between black porgy and siganussp (Siganus oramin) with different living habits and feeding habits.The following results were obtained: 1. Exposed to the lower BaP concentration (0.5μg/L and 1.0μg/L), it was found that the hepatic EROD activities were induced simultaneously with the increase of the accumulation of BaP in liver, which showed a significant positive correlation. But the hepatic GST activities had no significant change during exposure period. The concentrations of 3-OH BaP in bile had no significant variation in the early exposure period, significant variations were found after 7days expsoure.The results indicated the hepatic CYP1A enzymes were induced in the metabolic process of BaP and developed the detoxicification effect on BaP, consequently, kept from the genotoxicity occurring.
     2. Exposed to the higher BaP concentration (2.0μg/L and 5.0μg/L) , Black Porgy showed a rapid increase on the accumulation of BaP in the liver, reached the peak after 12h exposure, and then it decreased gradually. Meanwhile, the concentrations of 3-OH BaP increased rapidly and reached its peak after 4-7d exposure. And the strong significant induction of EROD activities was found at the 12h exposure. This indicated that the bioaccumulation under the high concentration exposure could enhance the rate of BaP biotransformation in liver. However, the high concentration of BaP and its metabolites in liver may inhibit the activity of CYP1A, which would cause lesions in fish.
引文
[1]. Barid C. Environmen Chemistry [M]. New York: W H Free man and Company, 1995, 276-278.
    [2]. [0]Eisler R. Polycyclic Aromatic Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review, Biol. Rep. 85 (1, 11), U.S. Fish and Wildlife Service, Washington, D.C. 1987.
    [3]. 赵云英,马永安. 天然环境中多环芳烃的迁移转化及其对生态环境的影响[J].海洋环境科学,1998,17(2): 68–72.
    [4]. Phillips DH. Fifty years of benzo(a)pyrene [J]. Nature, 1983, 303 (9): 468-473
    [5]. 王连生.环境化学进展.化学工业出版社,1995.
    [6]. 汤根土,盛国英,傅家谟等.有机污染源标志物的探讨及其研究意义.中国环境科学, 1996,16 (3): 223~227.
    [7]. Pavanello Sofia, Clonfero Erminio. Biological indicators of genotoxic risk and metabolic polymorphisms [J]. Mutation Research/Reviews in Mut. Res, 2000, 463 (3):285-307.
    [8]. Schoket, Bernadette; Papp, Gizella; Lévay, Katalin; Mracková, Gabriela; Kadlubar, Fred F. Impact of metabolic genotypes on levels of biomarkers of genotoxic exposure [J]. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 2001, 482 (1-2):57-69.
    [9]. Guengerich, F. P. Metabolic activation of carcinogens [J]. Pharmacol. Ther. 1992, 54: 17-61.
    [10]. Govindarajan,V.S. Turmeric chemistry, technology and quality [J]. CRC Rev. Food Sci. Nutr. 1980, 12: 199–301.
    [11]. Sims,P. and Grover,P.L. Epoxides in polycyclic aromatic hydrocarbon metabolism and carcinogenesis [J]. Adv. Cancer Res.1974, 20: 165–275.
    [12]. Lin P, Hu SW, and Chang TH. Correlation between gene expression of aryl hydrocarbon receptor (AHR), hydrocarbon receptor nuclear translocator (ARNT), cytochromes P450 1A1 (CYP1A1) and 1B1 (CYP1B1) and inducibility of CYP1A1 and CYP1B1 in human lymphocytes [J]. Toxicol Sci .2003, 71: 20–26.
    [13]. Snyder R, Remmer H. Classes of hepatic microsomal mixed fuction oxidase inducers [J]. Pharmac Ther, 1979, 7:203-244.
    [14]. Stein,J.R., Rechert, W.L., Nishimoto,M. and Varanasi, U. Overveiw of studies on liver carcinogenesis in English sole from punget sound; evidence for a xenobiotic chemical etiology II: Biochemical studies [J]. Sci.Total Environ. 1990, 94: 51-69.
    [15]. 王咏,王春霞,王子健,徐镜波. 硝基芳烃对鲤鱼肝 EROD 活性影响的体外研究[J],环境科学,2001, 122 (14): 120-123.
    [16]. 王咏,王春霞徐镜波. 多环芳烃化合物对鲤鱼肝微粒体 EROD 的体外诱导[J],环境科学学报,2000,20, suppl (9): 176-181.
    [17]. 陆敦,印木泉,贺清玉,陈耀富.四种重金属化合物不同条件对 EROD 诱导活性的影响[J],第二军医大学学报,1998, 19 (4): 356-359.
    [18]. 霍传林,王菊英,韩庚辰,关道明. 鱼体内 EROD 活性性对多氯联苯类的指示作用[J]. 海洋环境科学,2002, 21 (1): 5-8.
    [19]. 陈国胜, 张甬元, 徐盈, 徐立红. 鲤鱼肝脏中 CYP1A1 的诱导作为沉积物中二恶英的毒 理学指标的研究 [J]. 中国环境科学, 1997, 17 (3): 264-268.
    [20]. 黎雯,徐盈,吴文忠. 鱼肝 EROD 活性诱导作为二恶英的水生生态毒理学指标[J]. 水生生物学报,2000, 3 (23):201-207.
    [21]. 陈加平,徐立红, 吴振斌, 张甬元, 林群生. 苯并(a)芘致毒的鱼的分子生态毒理学指标研究[J], 中国环境科学, 1999,19(5): 417-420.
    [22]. Wang CG., Chen JL., Yu A., Zheng WY. EROD activities of liver in Mugil so-iuy exposed to benzo(a)pyrene, pyrene and their mixture [J]. Acta oceanologica sinica, 2002, 22(2): 213-220.
    [23]. 顾海峰. 海水养殖污染区鱼肝 EROD 分析[J]. 台湾海峡, 2002,21 (3):292-296.
    [24]. Payne, J.F., Mathieu, A., Melvin, W., Fancey, L.L. Acetylcholinesterase, an old biomarker with a new future: Field trials in association with two urban rivers and a paper mill in Newfoundland [J]. Mar. Pollut. Bull. 1996, 25: 225-/231.
    [25]. Collier, T.K., Singh, S.V., Awasthi, Y.C., Varanasi, U. Hepatic xenobiotic metabolizing enzymes in two species of benthic fish showing different prevalences of contaminant- -associated liver neoplasms [J]. Toxicol. Appl. Pharmacol.1992, 113: 319-/324.
    [26]. Goks?yr, A., Fo¨ rlin, L. The cytochrome P450 system in fish, aquatic toxicology and environmental monitoring [J]. Aquat. Toxicol. 1999, 22: 287-/312.
    [27]. Godard, C., Said, M., Moore, M. J., Dickerson, R. L., and Stegeman, J. J. Molecular cloning of cytochrome P450 1B in three fish species scup (Stenotomus chrysops), mummichog (Fundulus hereroclitus), zebrafish (Danio rerio) and the cetacean striped dolphin (Stenella coeruloealba) [J]. Pollut. Resp. Mar. Environ. 1999, 10: 30.
    [28]. Jung, D.K.J., Klaus, T., Fent, K. Cytochrome P450 induction by nitrated polycyclic aromatic hydrocarbons, azaarenes, and binary mixtures in fish hepatoma cell line PLHC-1 [J]. Environ. Toxicol. Chem. 2000, 20: 149-/159.
    [29]. Van der Oost, R., Beyer, J., Vermeulen, N.P.E. Fish bioaccumulation and biomarkers in environmental risk assessment: a review [J]. Environ Toxic and Pharmac, 2003, 13: 57-149.
    [30]. Fent, K., Woodin, B.R., Stegeman, J.J. Effects of triphenyltin and other organotins on hepatic monooxygenase system in fish [J]. Comp. Biochem. Physiol. C Pharmacol. Toxicol. Endocrinol. 1998, 121: 277-/288.
    [31]. Whyte, J.J., Jung, R.E., Schmitt, C.J., Tillitt, D.E. Ethoxyresorufin-O-deethylase (EROD) activity in fish as a biomarker of chemical exposure [J]. Crit. Rev. Toxicol. 2000, 30: 347-/570.
    [32]. Stein,J.R., Rechert, W.L., Nishimoto,M. and Varanasi, U. Overveiw of studies on liver carcinogenesis in English sole from punget sound; evidence for a xenobiotic chemicaletiology II: Biochemical studies [J]. Sci.Total Environ. 1990, 94:51-69.
    [33]. Jaylet A, Gauthier L, Zoll C.Micr onucleus test using peripheral red blood cells of amphibian larvae for detection of genotoxic agents in freshwater pollution.In: Sandhu , et al, editor.In situ evaluations of biological hazards of environmental pollutants [J]. New York: Plenum Press, 1990.p.71 –80.
    [34]. Burgeot T, Bocquene′ G, Pingray G, Godefroy D, Legrand J, Dimeet J, Marco F, Vincent F, Henocque Y, Jeanneret HO, Galgani F.Monitoring biological effects of contamination in marine fish along French coasts by measurement of ethoxyresorufin-O-deethylase activity [J].Ecotoxicol Environ Saf 1994, 29:131 –147.
    [35]. Haasch ML, Prince R, Weijksnora PJ, Cooper KR, Lech JJ. Caged and wild fish: induction of hepatic cytochrome P-450 (CYP1A1) as an environmental biomonitor [J]. Envir on Toxicol Chem, 1993, 12:885 –895.
    [36]. Marty J, Lesca P, Jaylet A, Ardourel C, Rivie`re JL.In vivo and in vitro metabolism of benzo(a)pyrene by the larva of the newt Pleurodeles waltl [J].Comp Biochem Physiol, Part C, 1989, 93:213 –219.
    [37]. Goks?yr, A., Andersson, T., Forlin, L., Snowberger, E.A., Woodin, B.R., Stegeman, J.J. Cytochrome P-450 monooxygenase activity and immunochemical properties of adult and foetal piked (minke) whales, Balaenoptera acutorostrata. In: Schuster, I. (Ed.), Cytochrome P-450: Biochemistry and Biophysics [N]. Taylor & Francis, Basingstoke, pp.1989. 698–701.
    [38]. Li, H., Boon, J.P., Lewis, W.E., van den Berg, M., Nyman, M., Letcher, R.J. Hepatic microsomal cytochrome P450 enzyme activity in relation to in vitro metabolism/inhibition of polychlorinated biphenyls and testosterone in Baltic grey seal (Halichoerus grypus) [J]. Environ. Toxicol. Chem. 2003, 22: 636–644.
    [39]. Peter, R., Bocker, R., Beaune, P.H., Iwasaki, M., Guengerich, F.P., Yang, C.S. Hydroxylation of chlorzoxazone as a specific probe for human liver cytochrome P-450IIE1 [J]. Chem. Res. Toxicol. 1990,3: 566–573.
    [40]. Wolkers, J., Witkamp, R.F., Nijmeijer, S.M., Burkow, I.C., de Groene, E.M., Lydersen, C., Dahle, S., Monshouwer, M. Phase I and phase II enzyme activities in ringed seals (Phoca hispida): characterization of hepatic cytochrome P450 by activity patterns, inhibition studies, mRNA analyses, and western blotting [J]. Aquat. Toxicol. 1998, 44: 103–115.
    [41]. van Hezik, C.M., Letcher, R.J., de Geus, H.-J., Wester, P.G., Goks?yr, A., Lewis, W.E., Boon, J.P. Indications for theinvolvement of a CYP3A-like iso-enzyme in the metabolism of chlorobornane congeners in seals from inhibition studies with liver microsomes [J]. Aquat. Toxicol. 2001, 51: 319–333.
    [42]. George, S.G. Enzymology and molecular biology of phase II xenobiotic-conjugating enzymes in fish. In: Malins, D.C., Ostrander, G.K. (Eds.), Aquatic Toxicology; Molecular, Biochemical and Cellular perspectives [M]. Lewis Publishers, CRC press, 1999, pp.37-/85.
    [43]. Varanasi, U., Stein, J.E., Nishimento, M., Reichert, W.L., Collier, T.K. Chemical carcinogenesis in feral fish: uptake, activation, and detoxification of organic xenobiotics.Environ. Health. Perspect. 1987, 71: 155-/170.
    [44]. George, S.G. Enzymology and molecular biology of phase II xenobiotic-conjugating enzymes in fish. In: Malins, D.C., Ostrander, G.K. (Eds.), Aquatic Toxicology; Molecular, Biochemical and Cellular perspectives [M]. Lewis Publishers, CRC press, 1994, pp. 37-/85.
    [45]. Padrós J, Pelletier E, Ribeiro O C. Metabolic interactions between low doses of benzo[a]pyrene and tributyltin in arctic charr (Salvelinus alpinus): a long-term in vivo study [J]. Toxicology and Applied Pharmacology, 2003, 192: 45–55.
    [46]. 聂湘平. 多氯联苯得环境毒理研究动态, 生态科学, 2003, 22 (2): 171-178..
    [47]. 王重刚,陈奕欣,郑微云,余群. 苯并(a)芘、芘及其混合物暴露对梭鱼肝脏谷胱甘肽硫转移酶活性的影响[J]. 海洋科学,2004, 3 (28): 40-43.
    [48]. 孙媛媛, 于红霞, 沈骅, 张景飞, 刘红玲, 王晓蓉.2-硝基-4'-羟基二苯胺在鲫鱼肝脏中的富集及其对肝脏抗氧化指标的影响[J]. 农业环境科学学报. 2005, 24(1): 26-30.
    [49]. George, S.G. Enzymology and molecular biology of phase II xenobiotic-conjugating enzymes in fish [N] . In: Malins, D.C., Ostrander, G.K. (Eds.), Aquatic Toxicology; Molecular, Biochemical and Cellular perspectives [M]. Lewis Publishers, CRC press, 1994, pp. 37-/85.
    [50]. Mather-Mihaich, E., Di Giulio, R.T. Oxidant, mixed-function oxidase and peroxisomal responses in channel catfish exposed to a bleached kraft mill effluent [J]. Arch. Environ. Contam. Toxicol. 1999, 20: 391-/397.
    [51]. Mayer, F.L., Versteeg, D.J., McKee, M.J., Folmar, L.C., Graney, R.L., McCume, D.C., Rattner, B.A. Metabolic products as biomarkers. In: Huggett, R.J., Kimerly, R.A., Mehrle, P.M., Jr, Bergman, H.L. (Eds.), Biomarkers: Biochemical, Physiological and Histological Markers of Anthropogenic Stress [M]. Lewis Publishers, Chelsea, MI, USA, 1992, pp. 5-/86.
    [52]. Van Schanke, A., Boon, J.P., Aardoom, Y., van Leest, A., van Schooten, F.J., Maas, L., van den Berg, M., Everaarts, J. Effect of a dioxin-like PCB (CB 126) on the biotransformation and genotoxicity of benzo[a]pyrene in the marine flatfish dab (Limanda limanda ) [J]. Aquat. Toxicol. 2002, 50: 403-/415.
    [53]. Hektoen, H., Bernloft, A., Ingebrigtsen, K., Skaare, J.U., Goks?yr, A. Response of hepatic xenobiotic metabolizing enzymes in rainbow trout (Oncorhynchus mykiss ) and cod (Gadus morhua) to 2,3,7,8-tetrachlorodibenzo-p -dioxin (2,3,7,8-TCDD) [J]. Aquat. Toxicol. 1994, 28: 97-/106.
    [54]. Helle, E., Olsson, M., Jensen, S. DDT and PCB levels and reproduction in ringed seals from the Bothnian bay [J]. Ambio 1976a, 5: 188-189.
    [55]. Huuskonen, S., Linstro¨m-Seppa¨, P. Hepatic cytochrome P4501A and other biotransformation activities in perch (Perca fluviatilis ): the effects of unbleached pulp mill effluents [J]. Aquat. Toxicol. 1995, 31: 27-/41.
    [56]. Huuskonen, S., Lindstro¨m-Seppa¨, P., Koponen, K., Roy, S. Effects of non-ortho -substituted polychlorinated biphenyls (congeners 77 and 126) on cytochrome P4501A andconjugation activities in rainbow trout (Oncorhyncchus mykiss ) [J]. Comp. Biochem. Physiol. 1996, 113: 205-/213.
    [57]. Van der Oost, R., Beyer, J., Vermeulen, N.P.E. Fish bioaccumulation and biomarkers in environmental risk assessment: a review [J]. Environ Toxic and Pharmac, 2003, 13: 57-149.
    [58]. Poginsky, B., Blomeke, B., Hewer, A., Phillips, D., Karbe, L., Marquardt, H. 32P-postlabeling analysis of hepatic DNA of benthic fish from European waters [J]. Proc. Am. Assoc. Cancer Res. 1996, 31: 568-578.
    [59]. Gundel, D., Angerer, J. High-performance liquid chromatographic method with fluorescence detection for the determination of 3-hydroxybenzo[a]pyrene and 3-hydroxybenz[a]anthracene in the urine of polycyclic aromatic hydrocarbon-exposed workers.[J]. Journal of Chomato- -graphy: B.2000, 738: 47-55.
    [60]. Johnston, E. P., and Baumann, P. C. Analysis of fish bile with HPLC-fluorescence to determine environmental exposure to benzo(a)pyrene [J]. Hydrobiologia. 1989, 188/189: 561–566.
    [61]. Lin, E.L.C., Cormier, S.M., Torsella, J.A. Fish biliary polycyclic aromatic hydrocarbon metabolites estimated by fixed-wavelength fluorescence: comparison with HPLCfluorescent detection [J]. Ecotoxicol. Environ. Saf. 1996, 35 (1): 16–23.
    [62]. Aas, E., Baussant, T., Balk, L., Liewenborg, B., Andersen, O.K.PAH metabolites in bile, cytochrome P4501A and DNA adducts as environmental risk parameters for chronic oil exposure: a laboratory experiment with Atlantic cod [J]. Aquat. Toxicol. 2000, 51: 241-/258.
    [63]. Van Schanke, A., Holtz, F., Van der Meer, J., Boon, J.P.,Ariese, F., Stroomberg, G., Van den Berg, M., Everaarts, J.M. Dose- and time-dependent formation of biliary benzo[a]pyrene metabolites in the marine flatfish dab (Limanda limanda) [J]. Environ. Toxicol. Chem. 2001,20: 1641–1647.
    [64]. Britvic, S., Lucic, D., Kurelec, B. Bile fluorescence and some early biological effects in fish as indicators of pollution by xenobiotics [J]. Environ. Toxicol. Chem. 1993, 12: 765–773.
    [65]. Collier, T.K., Varanasi, U. Hepatic activities of xenobiotic metabolizing enzymes and biliary levels of xenobiotics in English sole (Parophrys vetulus) exposed to environmental contaminants [J]. Arch. Environ. Contam. Toxicol. 1991, 20: 462–473.
    [66]. Krahn, M.M., Myers, M.S., Burrows, D.G., Malins, D.C. Determination of metabolites of xenobiotics in the bile of fish from polluted waterways [J]. Xenobiotica 1994, 14: 633–646.
    [67]. Aas, E., Baussant, T., Balk, L., Liewenborg, B., Andersen, O.K. PAH metabolites in bile, cytochrome P4501A and DNA adducts as environmental risk parameters for chronic oil exposure: a laboratory experiment with Atlantic cod [J] . Aquat. Toxicol. 2000, 51: 241-/258.
    [68]. Camus, L., Aas, E., B?rseth, J.F. Ethoxyresorufin-Odeethylase activity and fixed wavelength fluorescence detection of PAHs metabolites in bile in turbot (Scophthalmusmaximus L.). Exposed to a dispersed topped crude oil in a continuous flow system [J]. Marine Environ. Res. 1998, 46 (1–5): 29–32.
    [69]. F. Telli-Karakoc, P.J. Ruddockc, D.J. Birdc, A. Hewerd,A. Van Schankee, D.H. Phillipsd,L.D. Petersa. Correlative changes in metabolism and DNA damage in turbot (Scophthalmus maximus) exposed to benzo[a]pyrene [J]. Marine Environmental Research .2002, 54: 511–515.
    [70]. Van Schanke A, Holtz F, Der Meer JV. Dose-and time- dependent formation of biliary benzo(a)pyrene metabolites in in the marine flatfish dab (Lamianda limanda) [J]. Environment Toxicology and Chemistry. 2001,8 (20):1641-1647.
    [71]. Van Schanke A, Boon JP, Aardoom Y, Van Leest A, Van Schooten FJ, Maas L. Effect of a dioxin-like PCB on the biotransformation and genotoxicity of benzo(a)pyrene in the marine flatfish dab (Lamianda limanda) [J]. Aquat tocxicol 2000, 50: 403-415.
    [72]. Hellou, J., Upshall, C. Monocyclic aromatic hydrocarbon in bile of flounder exposed to a petroleum oil. Intern.[J]. Environ. Anal. Chem. 1995, 60: 101–111.
    [73]. Upshall, C., Payne, J.F., Hellou, J. Induction of MFO enzymes and production of bile metabolites in rainbow trout (Oncorhynchus mykiss) exposed to waste crankcase oil [J]. Environ. Toxicol. Chem. 1993, 12: 2105–2112.
    [74]. Gagnon, M.M., Holdway, D.A. EROD activity, serum SDH and PAH biliary metabolites in sand flathead (platycephalus bassensis) collected in port Phillip Bay, Australia [J]. Marine Pollution Bulletin. 2002, 44: 230-237.
    [75]. Steinert, S.A., Streib-Montee, R., Armstrong, J.L., Robertson, G., Schlenk, D., Roy, L. DNA damage in multiple tissues from flatfish collected for coastal ocean monitoring off Southern California [J]. Marine Pollution Bulletin., 2003, 45: 259-268.
    [76]. Baumann, P. C., and Harshbarger, J. C. Decline in liver neoplasms in wild brown bullhead catfish after coking plant closes and environmental PAHs plummet [J]. Environ. Health Perspect.1995, 105: 168–170.
    [77]. Guengerich, F. P. Metabolic activation of carcinogens [J]. Pharmacol. Ther. 1992, 54: 17-61.
    [78]. Conney AH. Induction of microsomal enzymes by foreign chemicals and carcinogenesis by polycyclic aromatic hydrocarbons:G.H.A. Clowes memorial lecture [J]. Cancer Res. 1982, 42: 4875-4917.
    [79]. Conney AH. Induction of microsomal enzymes by foreign chemicals and carcinogenesis by polycyclic aromatic hydrocarbons:G.H.A. Clowes memorial lecture [J]. Cancer Res. 1982, 42: 4875-4917.
    [80]. Flowers L, Bleczinski WF, Burczynski ME, Harvey RG, Penning TM. Dispositon and biological activity of benzo(a)pyrene-7,8-dione. A genotoxic metabolite generated by dihydrodiol dehydrogenase [J]. Biochem.1996, 35: 13664-13672.
    [81]. Frueh FW, Hayashibara KC, Brown PO, Whitlock JP.Jr. Use of DNA micromarrays to ananlyze dioxin-induced changes in human liver gene expression [J]. Toxicol Lett. 2001,122:189-203.
    [82]. Canova s, Degan P, Peters LD, Livingstone DR, Voltan R, Venier P. Tissue dose, DNA adducts, oxidative DNA damage and CYP1A-immunopositive proteins in mussels exposed to waterborne benzo(a)pyrene [J]. Mutat Res. 1998, 399: 17-30.
    [83]. Stansbury KH, Flesher JW, Gupta RC. Mechanism of aralkyl-DNA adduct formation from benzo(a)pyrene in vivo [J]. Chem. Res.Toxicol. 1994, 7: 254-259.
    [84]. Mannervik, B. Alin, P., Guthenberg, C., Jensson, H., Tahir, M.K.,Warholm, M.and Jornvall, H. Identification of three classes of cytosolic glutathione transferase common to several mammalian species: correlation between structural data and enzymatic properties [J]. Proc. Natl Acad. Sci., USA.1985, 82:7202–7206.
    [85]. Hayes, J.D. and Pulford, D.J. The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance [J]. Crit. Rev. Biochem. Mol. Biol. 1995, 30: 445–600.
    [86]. Meyer,D.J., Coles,B., Pemble,S.E., Gilmore,K.S., Fraser,G.M. and Ketterer,B. Theta, a new class of glutathione transferases purified from rat and man [J]. Biochem. J. 1991, 274: 409-414.
    [87]. Jerina, D.m., Drag metabolism from Microbe to man. edited by D.V. park et al., Taylor and Francrw, London, 1976.
    [88]. Varanasi, U. Metabolism of Polycyclic Aromatic Hydrocarbons in the Aquatic Environment [M]. CRC Press, BocaRaton, FL. 1989. 59-63.
    [89]. Lin P., Hu SW., and Chang TH. Correlation between gene expression of aryl hydrocarbon receptor (AHR), hydrocarbon receptor nuclear translocator (ARNT), cytochromes P450 1A1 (CYP1A1) and 1B1 (CYP1B1) and inducibility of CYP1A1and CYP1B1 in human lymphocytes [J]. Toxicol Sci. 2003, 71:20–26.
    [90]. van Iersel, M.L.P.S., Ploemen,J.-P.H.T.M., Struik,I., van Amersfoort,C., Keyzer,A.E., Schefferlie,J.G. and van Bladeren,P.J. Inhibition of glutathione S-transferase activity in human melanoma cells by α,β-unsaturated carbonyl derivatives. Effects of acrolein, cinnamaldehyde, citral, crotonaldehyde, curcumin, ethacrynic acid, and trans-2-hexenal [J]. Chem.-Biol. Interactions.1996, 102: 117–132.
    [91]. Sparnins,V.L., Barany,G. and Wattenberg,L.W. Effects of organosulfur compounds from garlic and onions on benzo[a]pyrene-induced neoplasia and glutathione S-transferase activity in the mouse [J]. Carcinogenesis. 1988, 9: 131–134.
    [92]. Srivastava,S.K., Hu,X., Xia,H., Zaren,H.A., Chatterjee,M.L., Agarwal,R. and Singh,S.V. Mechanism of differential efficacy of garlic organosulfides in preventing benzo[a]pyrene- induced cancer in mice [J].Cancer Lett. 1997, 118: 61–67.
    [93]. A. Hiratsuka, M. Kanazawa, T. Nishiyama, H. Okuda, K. Ogura, T. Watabe, A subfamily 2 homo-dimeric glutathione S-transferase mYrs–mYrs of class theta in mouse liver cytosol, Biochem. Biophys [J]. Res. Commun. 1995, 212: 743–750.
    [94]. G.W. Mainwaring, S.M. Williams, J.R. Foster, J. Tugwood, T. Green, The distribution of theta-class glutathione S-transferases in the liver and lung of mouse, rat and human [J]. Biochem. . 1996, 18: 297–303.
    [95]. A.T. Whittington, G.C. Webb, R.T. Baker, P.G. Board, Characterization of a cDNA and gene encoding the mouse theta class glutathione transferase mGSTT2 and its localization tochromosome 10B5-C1 [J]. Genomics. 1996, 33 : 105–111.
    [96]. C.D. Hsiao, E.O. Martsen, J.Y. Lee, S.P. Tsai, M.F. Tam, Aminoacid sequencing, molecular cloning and modeling of the chick liver class-theta glutathione S-transferase CL1 [J]. Biochem.. 1995, 312: 91–98.
    [97]. 朱德芬, 黑鲷人工养殖技术讲座[J].水产养殖, 1996 , (3): 30-31.
    [98]. 杨玻利 郑微云等, 重金属对黑鲷幼鱼和真鲷幼鱼的毒理效应[J]. 厦门大学学报, 1994, 33 (sup) :28-31.
    [99]. 林建清. 生物标志物法研究多环芳烃对海水养殖鱼类的毒性效应[M]. 厦门大学博士学位论文, 2000 年, p22-23.
    [100]. Mark F.Kirby, Paula Neall and Tina Tylor. EROD activity measured in flatfish from the area of the sea empress oil spill [J]. Chemosphere. 1999, 38(12): 2929-2949.
    [101]. Peter V. Hodson. Measuring the potency of pulp mill effluents for induction of hepatic mixed-function oxygenase activity in fish [J]. Journal of toxicology and environmentalhealth. 1976, 49:83-110.
    [102]. van Schanke A, Holtz F, van der Meer J, Boon JP, Ariese F, Stroomberg G, van den Berg M, Everaarts JM. Dose- and time-dependent formation of biliary benzowaxpyrene metabolites in the marine flatfish dab (Limanda limanda).[J]. Environ Toxicol Chem. 2001, 20:1641 –1647.
    [103]. 郭敏亮 姜涌明. 考马斯亮兰显色液组分对蛋白质测定的影响 [J]. 生物化学与生物物理进展, 1996, 23 (6): 558-561.
    [104]. Solé, Montserrat; Porte, Cinta; Albaigés, Joan. Hydrocarbons, PCBs and DDT in the NW Mediterranean deep-sea fish Mora moro. Deep Sea Research Part I[N]: Oceanographic Research Papers, 2001, 48 (2): 495-513.
    [105]. Pointet, Karine; Milliet, Arielle. PAHs analysis of fish whole gall bladders and livers from the Natural Reserve of Camargue by GC/MS.[J]. Chemosphere, 2000,40 (3): 293-299.
    [106]. Balk, L., Meijer, J., Depiere, J. w., and Appelgren, L. E., The uptake and distribution of benzo(a)pyrene in the northern pike (Esox lucius). Toxicol, appl. Pharmacol., 1984,74:420.
    [107]. Shailaja, M.S., Rodrigues, A. Nitrite-induced enhancement of toxicityof phenanthrene in fish and its implications for coastal waters [J]. Estuarine, Coastal and Shelf Science. 2003, 56:1107–1110.
    [108]. Gravato, V and Santos, M.A., Juvenile Sea Bass liver P450, EROD induction, and Erythrocytic genotoxic responses to PAHs and PAH-like compounds. Ecotoxicology and Evironmental safety, 2002, 51: 115-127.James, M.O. Cytochrome P450 monooxygenases in crustaceans [J]. Xenobiotica 1989, 19: 1063-1076.
    [109]. Au, D.W.T.; Wu, R.S.S.; Zhou, B.S.; Lam, P.K.S. Relationship between ultrastructural changes and EROD activities in liver of fish exposed to Benzo[a]pyrene [J]. Environmental Pollution, 1999, 104: 235—247.
    [110]. Stegeman, J. J., and Hahn, M. E.. Biochemistry and molecular biology of monooxygenases[M]. In Aquatic 1oxicology: molecular, biochemical, and cellular perspectives (D. C. Malins, and G. K. Ostrander, Eds.), Lewis/CRC Press, Boca Raton, FL. 1994, PP 87-206.
    [111]. Lee, S.S.T., Scott, J.G., 1989. Microsomal cytochrome P-450 monooxygenases in the house-fly (Musca domestica)-Biochemical changes associated with pyrethroid resistance and Phenobarbital induction [J]. Pestic. Biochem. Physiol. 1989, 35: 1–10.
    [112]. Van der Weiden, M.E.J., Hanegraaf, F.H.M., Eggens, M.L., Celander, M., Seinen, W., Vandenberg, M. Temporal induction of cytochrome P-450 1a in the mirror carp (Cyprinus carpio) after administration of several polycyclic aromatic hydrocarbons [J]. Environ. Toxicol. Chem. 1994, 13: 796–802.
    [113]. Van Der Oost, Ron; Satumalay, Karel; Goksoyr, Anders; Vindimian, Eric; Van Den Brink, Paul; et. al. Relationships Between Bioaccumulation of Organic Trace Pollutants (PCBS, OCPS and PAHS) and Biochemical Markers in Feral Eel (Anguilla anguilla); a Multi-Variant Analysis [J]. Marine Environ Res. 1996, 42 (1-4): pp.281
    [114]. Rahman Q,Khan SG,Ali S. Effect of chrysotile asbestos on cytochromep-450-dependent monooxygenase and glutathione-S-transferase activities in rat lung [J]. Chem Biol interact, 1990, 75: 305-313.
    [115]. Haasch ML, Prince R, Wejksnora PJ, Cooper KR, Lech JJ. Caged and wild fish: induction of hepatic cytochrome P-450 (CYP1A1) as an environmental biomonitor. Environ Toxicol Chem, 1993, 12 (6): 885– 95.
    [116]. Slaga,T.J., Bracken,W.J., Gleason,G., Levin,W., Yagi,H., Jerina,D.M. and Conney,A.H. Marked differences in the skin tumor-initiating activities of the optical enantiomers of the diastereomeric benzo[a]pyrene- 7,8-diol-9,10-epoxides [J]. Cancer Res. 1979, 39: 67–71.
    [117]. Yang,S.K. and Gelboin,H.V. Nonenzymatic reduction of benzo[a]-pyrene diol-epoxides to trihydroxypentahydrobenzo[a]pyrene by reduced nicotinamide adenine dinucleotide phosphate [J]. Cancer Res. 1976, 36: 4185–4189.
    [118]. Dock,L., Waern,F., Martinez,M., Grover,P.L. and Jernstro¨m,B. Studies on the further activation of benzo[a]pyrene diol epoxides by rat liver microsomes and nuclei [J]. Chem.-Biol. Interactions, 1986, 58: 301–318.
    [119]. Van Schanke, A., Holtz, F., Van der Meer, J., Boon, J.P.,Ariese, F., Stroomberg, G., Van den Berg, M., Everaarts, J.M. Dose- and time-dependent formation of biliary benzo[a]pyrene metabolites in the marine flatfish dab (Limanda limanda).[J]. Environ. Toxicol. Chem. 2001, 20: 1641–1647.
    [120]. Lemaire, P., Livingstone, D.R. Responses of hepatic biotransformation and antioxidant enzymes to CYP1Ainducers (3-methylcholanthrene, b-naphthoflavone) in sea bass (Dicentrarchus labrax), dab (Limanda limanda) and rainbow trout (Oncorhynchus mykiss) [J]. Aquat. Toxicol. 1996, 36: 141–160.
    [121]. Padrós J, Pelletier E, Ribeiro O C. Metabolic interactions between low doses of benzo[a]pyrene and tributyltin in arctic charr (Salvelinus alpinus): a long-term in vivo study [J]. Toxicology and Applied Pharmacology, 2003, 192: 45–55.
    [122]. 陈加平,徐立红,吴振斌等. 苯并(a)芘致毒的鱼的分子生态毒理学指标研究 [J]. 环境科学, 1999, 19(5): 417–420.
    [123]. Slaga,T.J., Bracken,W.J., Gleason,G., Levin,W., Yagi,H., Jerina,D.M. and Conney,A.H. Marked differences in the skin tumor-initiating activities of the optical enantiomers of the diastereomeric benzo[a]pyrene- 7,8-diol-9,10-epoxides [J]. Cancer Res. 1979, 39: 67–71.
    [124]. Yang,S.K. and Gelboin,H.V. Nonenzymatic reduction of benzo[a]-pyrene diol-epoxides to trihydroxypentahydrobenzo[a]pyrene by reduced nicotinamide adenine dinucleotide phosphate [J]. Cancer Res. 1976, 36: 4185–4189.
    [125]. Dock,L., Waern,F., Martinez,M., Grover,P.L. and Jernstro¨m,B. Studies on the further activation of benzo[a]pyrene diol epoxides by rat liver microsomes and nuclei [J]. Chem.-Biol. Interactions, 1986, 58: 301–318.
    [126]. Hasspieber,B.M., Behar,J.V., and Di Giulio,R.T. Glutathione-dependent defense in channel catfish (Ictalurus punctatus) and brown bullhead (Ameriurus nebulosus) [J]. Ecotoxicol. Environ. Saf. 1996 b, 28: 82-90.
    [127]. Collier, T.K.,Connor,S.D.,Eberhart, B.L., Anulacion, B.F.,Goksoyr, A., Varanasi, U., Using cytochrome P450 to monitor the aquatic environment: initial results from regional and national surveys [J]. Marine Environmental Research. 1992a, 34: 195–199.
    [128]. Van Schanke A, Holtz F, van der Meer J, Boon JP, Ariese F, Stroomberg G, van den Berg M, Everaarts JM. Dose- and time-dependent formation of biliary benzowaxpyrene metabolites in the marine flatfish dab (Limanda limanda).[J]. Environ Toxicol Chem. 2001, 20:1641 –1647.
    [129]. James,M.O., Heard, C.S., and Hawkins, W.E. Effect of 3 methylcholanthrene on monooxygenase epoxide hydrolase and glutathione S-transferase activities in small estuarine and freshwater fish [J]. Aquat.Toxicol. 1988, 12: 1-16.
    [130]. James,M.O., Schell,J.D., and Magee,V. Bioavailability, bitransformation and elimination of benzo(a)pyrene and benzo(a)pyrene-7,8-dihydrodiol in the lobster, Homarus americanus.[J]. Bull.Mt.Desert Isl. Biol Lab. 1989, 28: 119-121.
    [131]. Ueng,T.H., Ueng,Y.F., and Chou, M.W. Regioselective metabolism of benzo(a)pyrene and 7-chlorobenz(a)anthracene by fish liver microsomes [J]. Toxicol.Lett. 1994, 70: 89-99.
    [132]. C.L.J.Li., M.O.James. Oral bioavailability and pharmacokinetics of elimiantion of 9-hydroxybenzo(a)pyrene and its glucoside and sulfate conjugates after administration to male and female American lobsters,Homaus americanus.[J]. Toxicological Sciences. 2000, 57: 75-86.
    [133]. Boleas S, Fernandez C, Beyer J, et al.Accumulation and effects of benzo(a)pyrene on cytochrome P450 1A in waterborne exposed and intraperitoneal injected juvenile turbot (Scophthalmus maximus) [J]. Marine Environmental Research, 1998, 46: 17–21.
    [134]. Ueng,T.H., Ueng,Y.F., and Chou, M.W. Regioselective metabolism of benzo(a)pyrene and 7-chlorobenz(a)anthracene by fish liver microsomes [J]. Toxicol.Lett. 1994, 70: 89-99.
    [135]. Beyer J, Sandvik M, Skare JU, Egass E, Hylland K, Waagbo R, Goksoyr A. Time- and dose dependent biomarker responses in flounder (platichthys flesus ) exposed to benzo(a) pyrene, PCB-156 and cadmium [J]. Biomarkers. 1997, 2: 35-44.
    [136]. Borgen, A., Darvey,H., Castagnoli,N., Crocker,T.T., Rasussen,R.E., and Wang,I.Y., Metabolic conversion of benzo(a)pyrene by syrian hamster in liver microsomes and binding of metabolites to DNA,[J]. Med.Chem., 1993,16:502-510.
    [137]. Aas, E., Baussant, T., Balk, L., Liewenborg, B., Andersen, O.K. PAH metabolites in bile, cytochrome P450A and DNA adducts as environmental risk parameters for chronic oil exposure: a laboratory experiment with Atlantic cod.[J]. Aquatic Toxicology, 2000, 51: 241-258.
    [138]. Telli-Karakoc, F., Ruddock, P.J., Bird, D.J., Hewer, A., Van Schanke, A., Phillis, D.H., Peters, L.D. Correlative changes in metabolism and DNA damage in turbot ( Scophthalmus maximus) exposed to benzo(a)prene [J]. Marine Environmental Research, 2002, 54:511-515.
    [139]. Stein, J. E., Reichert, W. L., Nishimoto, M., and Varanasi, U. Overview of studies on liver carcinogenesis in English sole from Puget sound; evidence for a xenobiotic chemical etiology II: Biochemical studies [J] . Sci. Total Environ. 1990, 94: 51-69.
    [140]. Van der Oost, R. Van Schooten, F.-J., Ariese, F., Heida, H., Satumalay, K., and Vermeulen, N. P. Bioaccumulation, biotransformation and DNA binding of PAHs in feral eel (Anguilla anguilla) exposed to polluted sediments: A Field survey [J]. Environ. Toxicol. Chem. 1994, 13 (6): 859-870.
    [141]. Britvic, S., Lucic, D., Kurelec, B. Bile fluorescence and some early biological effects in fish as indicators of pollution by xenobiotics [J]. Environ. Toxicol. Chem. 1993, 12: 765–773.
    [142]. Krahn, M. M., Myers, M. S., Burrows, D. G., and Malins, D. C. Determination of metabolites of xenobiotics in the bile of fish from polluted waterways. Xenobiotica. 1984, 14: 633–646.
    [143]. C.M. Malmstr?m., K. Kopinen., P. Lindstr?m-Sepp?., G. Bylund. Induction and localization of hepatic CYP4501A in flounder and rainbow trout exposed to benzo(a)pyrene. Ecotoxicology and Environmental Safety. 2004, 58: 365-372. Leadly, TA., Haffner, GD., Arcand-Hoy, LD., Metcalfe, CD. Fluorescent arcomatic hydrocarbons in bile as a biomarker of exposure of brown bullhead to contaminated sediments. [J]. Environ Toxicol Chem. 1999, 18: 750-755.
    [144]. Leadly, TA., Haffner, GD., Arcand-Hoy, LD., Metcalfe, CD. Fluorescent arcomatic hydrocarbons in bile as a biomarker of exposure of brown bullhead to contaminated sediments. [J]. Environ Toxicol Chem. 1999, 18: 750-755.
    [145]. Hellou, J., Upshall, C., Monocyclic aromatic hydrocarbons in bile of flounder exosed to a petroleum oil.[J]. Int J Environ Anal Chem, 1995, 60: 101-111.
    [146]. 朱元鼎. 福建鱼类志(下卷) [M]. 福州: 福建科学技术出版社,1985,450–451.
    [147]. Britvic, S., Lucic, D., Kurelec, B. Bile fluorescence and some early biological effects in fish as indicators of pollution by xenobiotics [J]. Environ. Toxicol. Chem. 1993, 12: 765–773.
    [148]. Willett, L.K., Gardinali, P.R., Lienesch, L.A., Giulio, D. Comparative metabolism and excretion of benzo(a)pyrene in 2 species of lctalurid catfish [J]. Toxicological sciences. 2000, 58: 68-76.
    [149]. Fenet,H., Casellas, C., and Bontoux,J. Laboratory and Field-Caging studies on hepatic enzymatic activities in European eel and Rainbow trout [J]. Ecotoxicology and Environmental safety. 1998, 40: 137-143.
    [150]. Beyer, J., Sandvik, M., Hylland, K., Fjeld, E., Egaas, E., Aas, E., Utne Ska? re, J., Goks^yr, A. Contaminant accumulation and biomarker responses in flounder (Platichthys flesus L.) and Atlantic cod (Gadus morhua L.) exposed by caging to polluted sediments in Sorfjorden, Norway [J]. Aquat. Toxicol. 1996, 36: 75–98.
    [151]. Eggens, M.L., Vethaak, A.D., Leaverz, M.J., Horbach, G.J.M.J.,Boon, J.P., Seinen, W. Differences in CYP1A response between flounder (Platichthys flesus) and plaice (Pleuronectes platessa) after long-term exposure to harbour dredged spoil in a mesocosm study [J]. Chemosphere 1996b, 32: 1357–1380.
    [152]. Ploch, S. A. (1997). Comparative activation and genotoxicity of benzo(a)pyrene in two species of Ictalurid catfish. PhD. Dissertation, Duke University, Durham, NC.
    [153]. Lemaire, P., Fo¨ rlin, L., Livingstone, D.R. Responses of hepatic biotransformation and antioxidant enzymes to CYP1Ainducers (3-methylcholanthrene, b-naphthoflavone) in sea bass (Dicentrarchus labrax), dab (Limanda limanda) and rainbow trout (Oncorhynchus mykiss).[J]. Aquat. Toxicol. 1996, 36: 141–160.
    [154]. Ruddock, P.J., Bird, D.J., Mcevoy, J.and Peters,L.D. Bile metabolites of polycyclic aromatic hydrocarbons (PAHs) in European eels Anguilla anguilla from United Kingdom estuaries [J]. The Science of the Total Environment. 2003, 301: 105-117.
    [155]. Kennedy, C. J., Gill, K. A., and Walsh, P. J. Thermal modulation of benzo(a)pyrene metabolism by the gulf toadfish, Opsanus beta [J]. Aquat. Toxicol. 1989, 15: 331–344.
    [156]. Nishimoto, M., Yanagida, G. K., Stein, J. E., Baird, W. M., and Varanasi, U. The metabolism of benzo(a)pyrene by English sole (Parophrys vetulus): Comparison between isolated hepatocytes in vitro and liver in vivo [J]. Xenobiotica . 1992, 22: 949–961.
    [157]. Yuan, Z., Kumar, S., and Sikka, H. C. Comparative metabolism of benzo(a)pyrene by liver microsomes of channel catfish and brown bullhead [J]. Environ. Toxicol. Chem.1997, 16: 835–836.
    [158]. Willet, K.L., Gardinali, P.R., Lienesch, L.A., Di Giulio, R.T. Comparative metabolism and excretion of benzo(a)pyrene in 2 species of lctalurid catfish [J]. Environ. Toxicol.2000, 58: 68-76.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700