用户名: 密码: 验证码:
排硫硫杆菌亚硫酸盐受体氧化还原酶的纯化和性质
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从烟气生物脱硫系统的好氧产硫磁性稳态流化床反应器中取磁性多孔珠固定化生物膜,采用排硫硫杆菌培养基在好氧条件下富集、反复分离纯化获得分离菌,经过细菌、菌落形态的观察以及一系列生理生化指标,对应伯杰氏细菌鉴定手册,初步鉴定该分离菌为硫杆菌属(thiobacillus)的排硫硫杆菌(thiobacillus thioparus)。
     将分离纯化得到的排硫硫杆菌细胞超声波破碎、脱盐浓缩、DEAE-52离子交换层析、Sephadex G-150分子排阻层析分离纯化得到亚硫酸盐受体氧化还原酶,并对其进行性质表征。光谱分析表明该酶除了在280nm外无其他特征吸收峰;SDS-PAGE结果显示该酶是一种αβ异二聚体,由分子量33.9KDa和42.2KDa的两个亚基构成;活力分析发现有92%的酶活存在于细胞膜部分,该酶属于膜蛋白。其最适pH为7.5,最适温度为40℃,在3-7.5较宽的pH范围内酶活力具有很好的稳定性,温度在3℃-50℃之间酶活力能保持在70%以上。该酶对亚硫酸钠的Vmax为22.15μM/min,Km为86.09μM;底物专一性强,该酶基本不受Na~+、K~+、Mg~(2+)、Fe~(2+)、Fe~(3+)、Ca~(2+)、Cu~(2+)、Zn~(2+)、Mn~(2+)和Ba~(2+)等金属离子的影响,EDTA和氢氧化钠对该酶有明显的抑制作用。其氧化产物为硫酸盐。
     对可能参与分离菌硫氧化代谢途径中的酶采用酶活分析方法进行了测定,并参考相关文献,提出了分离菌硫氧化代谢途径的可能模型。
The biofilm immobilized on the magnetic porous beads obtained from the aerobic magnetically stabilized bed (aMSFB) was enriched cultured under the aerobic condition by using culture medium for thiobacillus thioparus, and isolated and purified repeatedly to get the isolated bacteria. The isolated bacteria was identified as thiobacillus thioparus of thiobacillus according to《Bergey’s Manual of Systemaic Bacteriology》through the observe of the bacteria and the morphology of the bacteria clone and a series of physiological and biochemical index.
     The isolated and purified thiobacillus thioparus bacteria were broken by using ultrasonic,and then desalted condensed. sulfite acceptor oxidoreductase was obtained through isolation and purification by using DEAE-52 ion-exchange chromatography and Sephadex G-150 molecular-exclusion chromatography and was characterized for its properties. The spectra analysis indicated that the enzyme had no other characteristic adsorption peak except in 280nm. SDS-PAGE showed that the enzyme was aαβheterodimer constituted by two subunits with molecular weights 33.9kDa and 42.2 kDa. Activity analysis indicated that 92% of enzyme existed in the cell membrane and the enzyme was a membrane protein. The optimum pH of the enzyme was 7.5, the optimum temperature of the enzyme was 40℃and the enzyme activity had good stability and the enzyme activity could maintain up to 70% within the temperature range of 3℃-50℃. The Vmax and Km of the enzyme to sodium sulfite as substrate were 22.15μM/min and 86.09μM respectively. The enzyme had high substrate specificity and could not be influenced by metal ions. EDTA and NaOH had obvious inhibition to the enzyme and the oxidative product was sulphate.
     According to the latest study of sulphur oxidative bacteria, the cytoplasm extracts and the membrane extracts of the isolated bacteria were fetched and the activity of the key enzymes in the physiological and biochemical metabolism was determined to judge the location of the enzymes. The possible sulphur metabolic path in thiobacillus thioparus was conferred through the analysis of the reactive paths catalyzed by different enzymes and the reference to the relative literature.The sulphur oxidative system model of thiobacillus thioparus was put forward based on the above facts.
引文
[1]王凯军,胡超. 生物硫循环及脱硫技术的新近展[J]. 环境保护,2006,(2): 71–74.
    [2] P. N. L. Lens,J. G. kuenen. The biological sulfur cycle: novel opportunities for environmental biotechlogy. Water Science and Technology[J],2001,44(8): 57–66.
    [3] Suzuki,I.,Lee,D.,MacKay,B.,Harahuc,L.,and Oh,J.K. Effect of vairous ions pH and osmotic pressure on oxidaiton of elemental sulfur by Thiobacillus thiooxidans. Appl. Environ. Microbiol, 1999,65: 5163–5168.
    [4] Bacon M.,and Ingledew W.J. The reductive reactions of Thiobacillus ferrooxidans on sulpHur and selenium[J]. FEMS Microbiol. Lett,2003,58: 189–194.
    [5] Suzuki,I. Sulfite: cytochrome c oxidoreductase of thiobacilli[J]. Methods Enzymol,1994,243: 447–454.
    [6] Beffa,T.,Berczy,M.,and Aragno, M. Inhibition of respiratory oxidation of elemental sulfur and thiosulfate in Thiobacillus versutus and another sulfur-oxidizing bacterium[J]. FEMS Microbiol. Lett,2002,90: 123–128.
    [7] Suzuki,I.,Chan,C.W.,and Takeuchi,T.L. Oxidation of elemental sulfur to sulfite by Thiobacillus thiooxidans cells. Appl. Environ. Microbiol,1992,58: 3767–3769.
    [8] Chan,C.W.,and Suzuki,I. Thiosulfate oxidation by sulfur grown Thiobacillus thiooxidans cells, cell-free extracts,and thiosulfate-oxidizing enzyme. Can. [J]. Microbiol,2004,40: 816–822.
    [9] Beffa,T.,Fischer,C.,and Aragno,M. Growth and respiratory oxidation of reduced sulfur compounds by intact cells of Thiobacillus novellus(Type strain)grown on thiosulfate[J]. Curr. Microbiol,1993,26: 323–326.
    [10] Suzuki,I. Oxidation of elemental sulfur by an enzyme system of Thiobacillus thiooxidans. Biochim[J]. BiopHys.Acta,1965,122: 22–33.
    [11]廖嘉陵,苏士军,丁桑岚. 微生物烟气脱硫技术研究进展[J]. 四川环境,2006,25(1):79–83.
    [12]蒲万芬,胡佩. 酸性气体中硫化氢的微生物脱除方法[J].天然气工业,2005,25(3):166-170.
    [13] Leathan W. W. J. Bacteriology[M],1956,72(5):700~703.
    [14] Silverman M P ,Rogoff M H ,Wender I. Appl Microbiol ,1961 ,9(6):491~496.
    [15] Kargi F. Biotechnol Bioeng [M],1982 ,24 (3) :749~752.
    [16]徐毅,钟慧芳,蔡文六. 嗜盐碱古生菌新种的系统分类学研究[J].微生物学报,2000 ,30 (2):134~140.
    [17]SCHONHEIT P. Kinetic mechanism for the ability of sulfate reducers to out-compete methanogens for acetate [J]. Arch Microbiol,1982,132: 285–288.
    [18]郑士民,庄国强,吴志红. 微生物学报,1993 ,33(3):192~198.
    [19] Izumi Y,Ohshiro T ,Ogino H ,et al . Appl Environ Microbiol ,2004 ,60(1):223~226.
    [20] Omori T ,Monna L ,Saiki Y,et al . Appl Environ Microbiol ,1992 ,58(3):911~915.
    [21] Rhee S K,Chang J H ,Chang Y K, et al . Appl Environ Microbiol ,1998 ,64(6):2327~2331.
    [22]史家良,徐亚同等. 非紫硫细菌分解高浓度有机废水的研究 [J]. 微生物学通报,1980, 7(5):209-212.
    [23]翁酥颖,戚蓓静,史家梁等. 环境微生物学[M]. 北京:科学出版社,1985.
    [24] Kuenen J G,ROBERTSON L A. The use of natural bacterial populations for the treatment of sulfur containing wastewater [J]. Biodegradation,1992,(3): 239 –254.
    [25]王家玲.环境微生物学[M]. 北京: 高等教育出版社,1988.
    [26] KUENEN J G. Bergeys manual of systematic bacteriology [M]. [s.l.]: Williams & Wilkins Baltimore,1989.
    [27] Chandra D ,Roy P ,Mishra A K, et al . Fuel ,1979 ,58 (7) :549~550.
    [28] Isbister J D ,Kobylinski E A. Coal Sci Technol ,1985 ,9 :627~641.
    [29] R E 布坎南,N E 吉本斯.伯杰细菌鉴定手册[M].科学出版社,1989:640-675
    [30]李国辉,胡杰南. 化学进展,1997 ,9 (1) :79~89.
    [31]刘如林,刁虎欣,梁风来等. 光合细菌及应用[M]. 北京:中国农业科技出版社,1991.
    [32] Chan,C.W., and Suzuki, I. Thiosulfate oxidation by sulfurgrown Thiobacillus thiooxidans cells, cell-free extracts, and thiosulfate-oxidizing enzyme. Can. J. Microbiol, 1994, 40: 816–822.
    [33] Tano,T.,Ito, T.,Takesue, H.,Sugio,T.,and Imai, K. B-type cytochrome,an electron carrier in the sulfite-oxidation system of Thiobacillus thiooxidans. J. Ferment. Technol, 1982, 60: 181–187.
    [34] Vestal J.R.,Lundgren D.G. The sulfite oxidase of Thiobacillus ferrooxidans(Ferrobacillus ferrooxidans)[J]. Canadian J Biochem,1971,49(10): 1125-1130.
    [35] Sugio,T.,T. Katagiri,M. Moriyama,Y. L. Zhen,K. Inagaki,and T. Tano. Existence of a new type of sulfite oxidase which utilizes ferric ions as an electron acceptor in Thiobacillus ferrooxidans [J]. Appl Environ Microbiol,1998,54:153-157.
    [36] Nakamura K.,Yoskikawa H.,Okubo S.,et al.. Purification and properties of membrane-bound sulfite dehydrogenase from Thiobacillus thiooxidans JCM7814 [J]. Biosci Biotechnol Biochem, 1995,59:11-15.
    [37] Govardus A. H. de Jong,Jane A. Tang,et al. Purification and characterization of a sulfite:cytochrome c oxidoreductase from Thiobacillus acidopHilus [J]. J Mol Catalysis B: Enzymatic,2000,8:61-67.
    [38] Toghrol,F.,Southerland,W.M. Purification of Thiobacillus novellus sulfite oxidase. Evidence for the presence of heme and molybdenum [J]. Journal of Biological Chemistry,1983,258: 6762-6766.
    [39] Southerland W.M.,Toghrol F. Sulfite oxidase activity in Thiobacillus novellas [J]. J Bacteriol, 1983,156(2):941–944.
    [40] Lu,W. P.,D. P. Kelly. Purification and characterization of two essential cytochromes of the thiosulpHate-oxidizing multienzyme system from Thiobacillus A2(Thiobacillus versutus)[J]. Biochim BiopHys Acta,1984,765:106-117.
    [41] Moriarty D. J.,Nicholas D. J. Electron transfer during sulpHide and sulpHite oxidation by Thiobacillus concretivorus. Biochim BiopHys Acta ,1970,216(1): 130-138.
    [42] Kappler U.,Dahl C. Enzymology and molecular biology of prokaryotic sulfite oxidation [J]. FEMS Microbiol Lett,2001,203:1-9.
    [43] Suzuki,I. Oxidation of elemental sulfur by an enzyme system of Thiobacillus thiooxidans [J]. Biochim BiopHys Acta,2002,104:359-371.
    [44] Suzuki,I. Incorporation of atmospHeric oxygen-18 into thiosulfate by the sulfur-oxidizing enzyme of Thiobacillus thiooxidans [J]. Biochim BiopHys Acta,2001,110: 97-101.
    [45] Silver,M.,Lundgren,D.G. Sulfur-oxidizing enzyme of Ferrobacillus ferrooxidans (Thiobacillus ferrooxidans)[J]. Canadian J Biochem,1968,46:457-461.
    [46] Sugio,T.,Suzuki,H.,Oto,A.,et al. Purification and some properties of a hydrogen sulfidebinding protein that is involved in sulfur oxidation of Thiobacillus ferrooxidans [J]. Agri Biol Chem, 1991,55: 2091-2097.
    [47] Tabita,R.,M. Silver,D. G. Lundgren. The rhodanese enzyme of Ferrobacillus ferrooxidans (Thiobacillus ferrooxidans)[J]. Canadian J Biochem,1996,47:1141-1145.
    [48] Gardner,M. N.,D. E. Rawlings. Production of rhodanese by bacteria present in bio-oxidation plants to recover gold from arsenopyrite concentrates [J]. J Appl Microbiol,2000,89:185-190.
    [49] Ramírez,P.,H. Toledo,N. Guiliani,et al. An Exported Rhodanese-Like Protein Is Induced during Growth of Acidithiobacillus ferrooxidans in Metal Sulfides and Different Sulfur Compounds [J]. Appl Environ Microbiol,2002,68(4):1837-1845.
    [50] Nakamura,K.,Nakamura,M.,Yoshikawa,H. et al. Purification and properties of thiosulfate dehydrogenase from Acidithiobacillus thiooxidans JCM7814 [J]. Biosci Biotechnol Biochem, 2001,65:102-108.
    [51] Silver,M.,and D. G. Lundgren. The thiosulfate-oxidizing enzyme of Ferrobacillus ferrooxidans (Thiobacillus ferrooxidans)[J]. Canadian J Biochem,1968,46:1215-1220.
    [52]Visser J. M.,De Jong G.A.H.,Robertson L.A.,Kuenen J.G. Purification and characterization of a periplasmic thiosulfate dehydrogenase from the obligately autotropHic Thiobacillus sp.W5. Arch Microbiol ,1996,166:372–378
    [53] Meulenberg,R.,Pronk,J.T.,Hazeu,W.,et al. Oxidation of reduced sulfur compounds by intact cells of Thiobacillus acidopHilus [J]. Arch Microbiol,1992,157:161-168
    [54] Wakai S.,Kikumoto M.,Kanao T., et al. Involvement of sulfide quinone oxidoreductase in sulfur oxidation of an acidopHilic iron-oxidizing bacterium, Acidithiobacillus ferrooxidans NASF-1. Biosci Biotechnol Biochem 2004,68:2519-2528.
    [55] Rohwerder T.,W. Sand. The sulfane sulfur of persulfides is the actual substrate of the sulfur-oxidizing enzymes from Acidithiobacillus and AcidipHilium spp [J]. Microbiology,2003, 149,1699-1709.
    [56] Ohmura,N.,Tsugita,K.,Koizumi,J. et al. Sulfurbinding protein of flagella of Thiobacillus ferrooxidans [J]. J Bacteriol,1996,178:5776-5780.
    [57] Buonfiglio,V.,Polidoro,M.,Flora,L.,et al. Identification of two outer membrane proteins involved in the oxidation of sulpHur compounds in Thiobacillus ferrooxidans [J]. FEMS Microbiol Rev,1993,11: 43-50.
    [58] Buonfiglio,V.,Polidoro,M.,Soyer,F.,et al. A novel gene encoding a sulfur-regulated outer membrane protein in Thiobacillus ferrooxidans [J]. J Biotechnol,1999,72:85-93.
    [59] Steudel,R.,Holdt,G.,G?bel,T. et al. ChromatograpHic separation of higher polythionates SnO 62-(n=3…22) and their detection in cultures of Thiobacillus ferrooxidans;molecular composition of bacterial sulfur secretion [J]. Ang Chem Int Ed,1987,26:151-153.
    [60] Bugaytsova Z.,E. B. Lindstr?m. Localization,purification and properties of a tetrathionate hydrolase from Acidithiobacillus caldus [J],Euro J Biochem,2004,271: 272-280.
    [61] Van Driessche G,Koh M,Chen Z-W,Mathews SF,Meyer TE,Bartsch RG,Cusanovich MA, van Beeumen JJ. Covalent structure of the flavoprotein subunit of the flavocytochrome c: sulfide dehydrogenase from the purple pHototropHic bacterium Chromatium vinosum. Protein Sci, 1996,5:1753–1764.
    [62]张成桂,夏金兰,邱冠周.嗜酸硫杆菌属硫氧化系统模型[J]. 中国科学论文在线, 2006.
    [63]王安, 张永奎, 陈华等. 微生物法烟气脱硫技术研究[J]. 重庆环境科学,2001,23(2):37–39.
    [64]何正国,李亚勤,周培瑾. 氧化亚铁硫杆菌的铁和硫氧化系统及其分子遗传等[J]. 微生物学报, 2000 ,40(5):563-566.
    [65]陈天寿主编.微生物培养基的制造与应用[M].北京:中国农业出版社,1995:182–184.
    [66]李建武,余瑞元,袁明秀等.生物化学实验原理和方法[M].北京大学出版社,1999,171–176.
    [67]沈萍 范秀容 李广武主编. 微生物学实验(第三版)[M].北京:高等教育出版社,1981:26–46.
    [68]余瑞元,袁明秀,陈丽蓉等. 生物化学实验原理和方法[M]. 北京大学出版社出2005,115–157.
    [69]汪家政,范明.蛋白质技术手册[M].科学出版社,2000:38–46.
    [70]刘晶,张灼,韩秀芳.硫杆菌的分离培养及其生长特性的研究[J],云南大学学报(自然科学版),1996,18(2):118–121.
    [71] Jan M Visser,Glvardus A.H.de Jong,Lesley A.Robertson. A novel membrane-bound flavocytochome c sulfide dehydrogenase from the colourless sulfur bacterium Thiobacillus sp. W5. Arch Microbiol,1997,167:295–301.
    [72] P. Zimmermann·S. Laska · A. Kletzin. Two modes of sulfite oxidation in the extremely thermopHilic and acidopHilic archaeon Acidianus ambivalens. Arch Microbiol. (1999)172:76-82
    [73] Sugio T.,Mizunashi W.,Inagaki K.,et al. Purification and some properties of sulfur:ferric ion oxidoreductase from Thiobacillus ferrooxidans [J]. J Bacteriol,1987,169(11):4916-4922.
    [74]萧能赓,余瑞元,袁明秀等.生物化学实验原理和方法[M].北京大学出版社,2005,66–76.
    [75] Bartsch RG,Kamen MD. Isolation and properties of two soluble heme proteins in extracts of the pHotoanaerobic Chromatium. J Biol Chem,1996,235:825–831.
    [76] Rohwerder T.,Gehrke T.,Kinzler K.et al. Bioleaching review part A: Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation [J]. Appl Microbiol Biotechnol,2003,63:239-248.
    [77] 朱章玉,俞吉安,林志新等. 光合细菌的研究及应用. 上海:上海交通大学出版社,1991.
    [78] Visser JM,De Jong GAH,Robertson LA,Kuenen JG. Purification and characterization of a periplasmic thiosulfate dehydrogenase from the obligately autotropHic Thiobacillus sp. W5. ArchMicrobiol,1996,166:372–378.
    [79] Bruser,T.,Selmer,T. and Dahl,C.‘ADP sulfurylase’from Thiobacillus denitrificans is an adenylylsulfate: pHospHate adenylyltransferase and belongs to a new family of nucleotidyltransferases. J. Biol. Chem,2000,275:1691–1698.
    [80] 买文宁主编.生物化工废水生物处理技术及工程实例[M].北京:化学工业出版社,2002:546–573.
    [81] Dimitry Yu,Govardus AH de Jong, Lesely A Robertson. Purification and characterization of sulfide dehydrogenase from alkalipHilic chemolithoautotropHic sulfur-oxidizing bacteria [J]. FEBS Letters,1998,427:11–14.
    [82] Kelly DP,Thermodynamic aspects of energy conservation by chemolithotropHic bacteria in relation to the sulfur oxidation pathways. Arch Microbiol ,1999,171:219–229
    [83] Schwarz S,Brüser T,Wynen A,Trüper HG,Dahl C. Classification of ADP sulfurylases from sulfur oxidizing bacteria and purification of the enzyme from Thiobacillus denitrificans RT. In: Kr?ger A(ed)Biospektrum Sonderausgabe VAAM Frühjahrtagung,Frankfurt/Main. Spektrum,Weinheim,1998,p 102
    [84] Friedrich CG. PHysiology and genetics of bacterial sulfur oxidation. Adv Microb PHysiol,1998, 39:236–289.
    [85] JM. Visser,GAH. de Jong,LA. Robertson. A novel membrane-bond flavocytochrome c sulfide dehydrogenase from the colourless sulfur bacterium Thiobacillus sp [J]. W5. Arch Microbiol, 1997,167:295–301.
    [86] Dahl C,Trüper HG ,Enzymes of dissimilatory sulfide oxidation in pHototropHic sulfur bacteria. Methods Enzymol ,2004,243: 400–421
    [87] Takakuwa S. Biochemical aspects of microbial oxidation of sulfur compounds. In: Oae S (ed)Organic sulfur chemistry: biochemical aspects. CRC Press,Boca Raton,1992,pp 1–43
    [88] Wiberg N.Lehrbuch der anorganischen Chemie,101st edn. De Gruyter, Berlin New York,1995,pp 575–598
    [89] Schippers,A.,W. Sand. Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur [J]. Appl Environ Microbiol,1999,65:319-321.
    [90] Steudel R. Mechanism for the formation of elemental sulfur from aqueous sulfide in chemical and microbiological desulfurization processes [J]. Ind Eng Chem Res,1996,35:1417-1423.
    [91] De Jong,G. A. H.,W. Hazeu,P. Bos,et al. Polythionate degradation by tetrathionate hydrolase of Thiobacillus ferrooxidans [J]. Microbiology,1997,143:499-504.
    [92] Friedrich,C. G. PHysiology and genetics of sulfur-oxidizing bacteria [J]. Adv Microbial PHysiol, 1998,39:235-289.
    [93] Friedrich,C. G.,D. Rother,F. Bardischewsky,et al. Oxidation of reduced inorganic sulfur compounds by bacteria: emergence of a common mechanism? [J]. Appl Environ Microbiol, 2001,67:2873-2882.
    [94] Kelly,D. P.,J. K. Shergill,W.-P. Lu,et al. Oxidative metabolism of inorganic sulfur compounds by bacteria [J]. Antonie van Leeuwenhoek,1997,71:95-107.
    [95] Wodara C,Bardischewsky F,Friedrich CG. Cloning and characterization of sulfite dehydrogenase, two c-type cytochromes and a flavoprotein of Paracoccus denitrificans GB17: essential role of sulfite dehydrogenase in lithotropHic sulfur oxidation. J Bacteriol,1997,179:5014–5023.
    [96]Brüser T,Selmer T,Trüper HG.Biochemistry and genetics of bacterial ADP sulfurylase .Gottschalk G Biospektrum Sonderausgabe VAAM Frühjahrtagung,G?ttingen.Spektrum,Weinheim,1999, p60
    [97] Schwarz S,Brüser T,Wynen A,Trüper HG.Dahl C.Classification of ADP sulfurylases from sulfur oxidizing bacteria and purification of the enzyme from Thiobacillus denitrificans RT. In: Kr?ger A Biospektrum Sonderausgabe VAAM Frühjahrtagung,Frankfurt/Main. Spektrum,Weinheim, 1998.p102

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700