用户名: 密码: 验证码:
壳聚糖修饰电极的研究及其在生物分析中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物高分子壳聚糖是甲壳素脱乙酰化反应产物,具有很好的生物兼容性、可生物降解性、成膜性和反应性,实际应用广泛。壳聚糖也常用于固定生物分子,研制酶电极等生物传感器。本学位论文中,对壳聚糖和酶电极近期研究进展进行了简要的综述,并完成了以下研究工作。
     1.利用壳聚糖对Cu~(2+)的配位吸附作用,制得壳聚糖-Cu~(2+)复合膜修饰电极,进一步通过Cu~(2+)与蛋白质的配位作用将葡萄糖氧化酶固定在金电极上制得酶电极。该酶电极检测葡萄糖的线性范围为0.03~2.5 mmol L~(-1),线性相关系数为0.997,检测限为1μmol L~(-1)(S/N=3)。以电化学石英晶体微天平(EQCM)技术监测了各修饰过程。
     2.在氧化条件下使对苯醌和壳聚糖的氨基发生醌胺反应,对壳聚糖进行改性,并利用改性壳聚糖固定葡萄糖氧化酶,研制了葡萄糖氧化酶电极。该酶电极检测葡萄糖的线性范围0.001~2 mmol L~(-1),灵敏度为8.37μA L mmol~(-1),线性相关系数为0.999。
     3.以戊二醛为交联剂,利用壳聚糖中氨基的活泼特性,将多巴胺连接到壳聚糖分子上,制备了电活性的壳聚糖-多巴胺复合材料及壳聚糖-多巴胺-碳纳米管复合材料。以FTIR和UV-VIS光谱对复合物进行了表征。复合物修饰Au电极能观察到邻酚的氧化还原峰,并能有效催化NADH的氧化,过电位可降低500 mV。修饰电极对NADH的检出限为65 nmol L~(-1)。
Biopolymer chitosan(CS)is a polysaccharide derived by deacetylation of chitin,which has been widely used in scientific and industrial fields due to its excellent properties such as biocompatibility, biodegradability,ability to form films,and high reactivity.CS is usually used as a matrix to immobilize biomolecules to construct biosensors such as enzyme electrodes.In this thesis,we have briefly reviewed the recent research progress for CS and relevant enzyme electrodes,and conducted the following researches.
     1.A chitosan-Cu~(2+)composite film modified Au electrode was prepared through the compleximetric adsorption of Cu~(2+)on chitosan,and glucose oxidase was further compleximetrically adsorbed on the chitosan-Cu~(2+)composite film through metal-protein complexation for fabricating an enzyme electrode.The biosensor exhibited a linear range from 0.03 to 2.5 mmol L~(-1)for glucose sensing,with a linear correlation coefficient of 0.997 and a detection limit of 1μmol L~(-1) (S/N=3).Various modification processes for the enzyme electrode were monitored by the electrochemical quartz crystal microbalance (EQCM)technique.
     2.Chitosan crosslinked by p-quinone was proposed to immobilize glucose oxidase(GOD)to develop a new GOD-based glucose biosensor.The biosensor exhibited a linear range from 0.001 to 2 mmol L~(-1)for glucose sensing,with a linear correlation coefficient of 0.999.
     3.Chitosan-dopamine and chitosan-dopamine-multiwalled carbon nanotubes composites were prepared by covalently linking the amino groups of dopamine and chitosan with glutaraldehyde,which was characterized by FTIR and UV-VIS spectra.The composite modified Au electrode with well-defined quinone redox peaks effectively mediated the oxidation of NADH in pH 7.0 phosphate buffer,with an overpotential decrease by ca.500 mV(vs.bare Au),a limit of detection of 65 nmol L~(-1).
引文
[1]蒋挺大.壳聚糖.北京化学工业出版社.2001,1-12.
    [2]王小红,马建标,何炳林.甲壳素壳聚糖及其衍生物的应用.功能高分子报,1999,12(2):197-202.
    [3]H.M.Yi,L.Q.Wu,W.E.Bentley,R.Ghodssi,G.W.Rubloff,J.N.Culver,G.F.Payne.Biofabrication with chitosan.Biomacromolecules,2005,6(6):2881-2894.
    [4]S.Roller,N.Covill.The antimicrobial properties of chitosan in mayonnaise andmayonnaise-based shrmp salads.J.Food Prot.,2000,63(2):202-209.
    [5]T.Sugamori,H.Iwase,M.Maeda,et al.Local hemostatic effects of microcrystallinte partially deacetylated chitin hydrochloride.J.Biomed.Mater.Res.,2000,46(2):225-232.
    [6]J.Hosokawa,M.Nishiyama,K.Yoshihara,T.Kubo.Biodegradable film derived from chitosan and homogenized cellulose.Ind.Eng.Chem.Res.,1990,29(5):800-805.
    [7]Q.M.Zhou,Q.J.Xie,Y.C.Fu,Z.H.Su,X.E.Jia,S.Z.Yao.Electrodeposition of carbon nanotubes-chitosan-glucose oxidase biosensing composite films triggered by reduction of p-benzoquinone or H_2O_2.J.Phys.Chem.B.,2007,111(38):11276-11284.
    [8]Q.Wang,H.Tang,Q.J.Xie,L.Tan,Y.Y.Zhang,B.M.Li,S.Z.Yao.Room-temperature ionic liquids/multi-walled carbon nanotubes/chitosan composite electrode for electrochemical analysis of NADH.Electrochim.Acta,2007,52(24):6630-6637.
    [9]W.John,I.Sons.Immobilization of trypsin on chitin and chitosan by solid-state mix-grinding.Biotechnol.Bioengin.,1982,ⅩⅩⅣ:753.
    [10]W.Edwards,W.D.Leukes,P.D.Rose,S.G.Burton. Immobilization of polyphenol oxidase on chitosan-coated polysulphone capillary membranes for improved phenolic effluent bioremediation.Enzyme Microb.Technol.1999,25(8-9):769-773.
    [11]X.L.Luo,J.J.Xu,J.L.Wang,H.Y.Chen,Electrochemically deposited nanocomposite of chitosan and carbon nanotubes for biosensor application.Chem.Commun.,2005,5(16):2169-2171.
    [12]X.L.Luo,J.J.Xu,Q.Zhang,G.J.Yang,H.Y.Chen.Electrochemically deposited chitosan hydrogel for horseradish peroxidase immobilization through gold nanoparticles self-assembly.Biosens.Bioelectron.,2005,21(1):190-196.
    [13]X.L.Luo,J.J.Xu,Y.Du,H.Y.Chen.A glucose biosensor based on chitosan-glucose oxidase-gold nanoparticles biocomposite formed by one-step electrodeposition.Anal.Biochem.,2004,334(2):284-289.
    [14]J.R Chen,J.Y.Chen.Preparation and characterization of immobilized phospholipase A_2 on chitosan beads for lowering serum cholesterol concentration.J.Mol.Catal.B:Enzym.,1998,5(5-6):483-490.
    [15]汪尔康,21世纪的分析化学,科学出版社,1999,127.
    [16]P.Bergveld.The future of biosensors.Sens.Actuators,A,1996,56(1-2):65-73.
    [17]P.D.Patel.(Bio)sensors for measurement of analytes implicated in food safety:a review.Trends Anal.Chem.,2002,21(2):96-115.
    [18]王镜岩,朱圣庚,许长法主编.生物化学(第三版).高等教育出版社,2002.320.
    [19]D.R.Thevenot,K.Toth,R.A.Durst,G.S.Wilson.Electrochemical biosensors:recommended definitions and classification.Pure Appl.Chem.,1999,71(12):2333-2348.
    [20] L. C. Clark, C. Lyons. Electrode systems for continuous monitoring in cardiovascular surgery. Ann. N. Y. Acad. Sci., 1962, 102(1): 29-45.
    [21] S. Updike, G. P. Hicks. The enzyme electrode. Nature, 1967, 214(5): 986-988.
    [22] E. J. D'Costa, I. J. Higgins, A. P. F. Turner. Quinoprotein glucose dehydrogenase and its application in an amperometric glucose sensor. Biosens. Bioelectron., 1986, 2(2): 71-87.
    [23] D. S. Bindra, Y. Zhang, G. S. Wilson. Design and in vitro studies of a needle-type glucose sensor for subcutaneous monitoring. Anal. Chem., 1991,63(17): 1692-1696.
    [24] S. Koide, K. Yokoyama. Electrochemical characterization of an enzyme electrode based on a ferrocene-containing redox polymer. J. Electroanal. Chem., 1999, 468(2): 193-201.
    [25] F. Patolsky, Y. Weizmann, I. Willner. Redox-active nucleic-acid replica for the amplified bioelectrocatalytic detection of viral DNA. J. Am. Chem. Soc, 2002, 124(5): 770-772.
    [26] N. Sato, H. Okuma. Amperometric simultaneous sensing system for D-glucose and L-lactate based on enzyme-modified bilayer electrodes. Anal. Chim. Acta, 2006, 565(2): 250-254.
    [27] E. S. Forzani, H. Q. Zhang, L. A. Nagahara, I. Amlani, R. Tsui, N. J. Tao. A conducting polymer nanojunction sensor for glucose detection. Nano. Lett., 2004, 4(9): 1785-1788.
    [28] N. Nakadan, S. Imabayashi, M. Watanabe. Temperature-induced reversible change in the redox response in phenothiazine-labeled poly(ethoxyethyl glycidyl ether) and its application to the thermal control of the catalytic reaction of glucose oxidase. Langmuir, 2004, 20(20): 8786-8791.
    [29] T. Nakaminami, S. Kuwabata, H. Yoneyama. Electrochemical oxidation of cholesterol catalyzed by cholesterol oxidase with use of an artificial electron mediator. Anal. Chem., 1997, 69(13): 2367-2372.
    [30] B. Strehlitz, B. Grulndig, W. Schumacher, P. M. H. Kroneck, K. D. Vorlop, H. Kotte. A nitrite sensor based on a highly sensitive nitrite reductase mediator-coupled amperometric detection. Anal. Chem., 1996, 68(5): 807-816.
    [31] A. Mulchandani, S. Pan. Ferrocene-conjugated m-phenylenediamine conducting polymer-incorporated peroxidase biosensors. Anal. Biochem., 1999, 267(1): 141-147.
    [32] J. Njagi, S. Andreescu. Stable enzyme biosensors based on chemically synthesized Au-polypyrrole nanocomposites. Biosens. Bioelectron., 2007, 23(2): 168-175.
    [33] V. C. Sanz, M. L. Mena, A. Gonzalez-Cortes, P. Yanez-Sedeno, J. M. Pingarron. Development of a tyrosinase biosensor based on gold nanoparticles-modified glassy carbon electrodes: application to the measurement of a bioelectrochemical polyphenols index in wines. Anal. Chim. Acta, 2005, 528(1): 1-8.
    [34] H. Muguruma, Y. Shibayama, Y. Matsui. An amperometric biosensor based on a composite of single-walled carbon nanotubes, plasma-polymerized thin film, and an enzyme. Biosens. Bioelectron., 2008, 23(6): 827-832.
    [35] D. E. Dodor, H. M. Hwang, S. I. N. Ekunwe. Oxidation of anthracene and benzo[a]pyrene by immobilized laccase from Trametes versicolor. Enzyme Microb. Technol., 2004, 35(2-3): 210-217.
    [36] M. Niculescu, S. Gaspar, A. Schulte, E. Csoregi, W. Schuhmann. Visualization of micropatterned complex biosensor sensing chemistries by means of scanning electrochemical microscopy. Biosens. Bioelectron., 2004, 19(10): 1175-1184.
    [37] B. H. Liu, R. Q. Hu, J. Q. Deng. Characterization of Immobilization of an enzyme in a modified zeolite matrix and its application to an amperometric glucose biosensor. Anal. Chem., 1997, 69(13): 2343-2348.
    [38] C. E. Campbell, J. Rishpon. NADH oxidation at the honey-comb like structure of active carbon: coupled to formaldehyde and sorbitol dehydrogenases. Electroanalysis, 2001, 13(1): 17-20.
    [39] M. Kamori, T. Hori, Y. Yamashita, Y. Hirose, Y. Naoshima. Immobilization of lipase on a new inorganic ceramics support, toyonite, and the reactivity and enantioselectivity of the immobilized lipase. J. Mol. Catal. B: Enzym., 2000, 9(4-6): 269-274.
    [40] Z. J. Lin, J. Q. Deng, D. Ling. A new tyrosinase biosensor based on tailoring the porosity of Al_2O_3 sol-gel to co-immobilize tyrosinase and the mediator. Anal. Chim. Acta, 2000, 407(1-2): 87-96.
    [41] H. Tatsumi, H. Katano, T. Ikeda. Kinetic analysis of enzymatic hydrolysis of crystalline cellulose by cellobiohydrolase using an amperometric biosensor. Anal. Biochem., 2006, 357(2): 257-261.
    [42] S. D. Sprules, J. P. Hart, S. A. Wring, R. Pittson. A reagentless, disposable biosensor for lactic acid based on a screen-printed carbon electrode containing Meldola's Blue and coated with lactate dehydrogenase, NAD~+ and cellulose acetate. Anal. Chim. Acta, 1995, 304(1): 17-24.
    [43] Y. Sekine, E. A. H. Hall. A lactulose sensor based on coupled enzyme reactions with a ring electrode fabricated from tetrathiafulvalen-tetracyanoquinodimetane. Biosens. Bioelectron., 1998, 13(9): 995-1005.
    [44] A. Belay, A. Collins, T. Ruzgas, P. T. Kissinger, L. Gorton, E. Csoregi. Redox hydrogel based bienzyme electrode for L-glutamate monitoring. J. Pharm. Biomed. Anal, 1999, 19(1-2): 93-105.
    [45] P. Asberg, O. Inganas. Hydrogels of a conducting conjugated polymer as 3-D enzyme electrode. Biosens. Bioelectron., 2003, 19(3): 199-207.
    [46] N. Dung, N. Huyen, N. Hang, T. Canh. Immobilization of urease on grafted starch by radiation method. Radiat. Phys. Chem., 1995, 46(4-6): 1037-1042.
    [47] A. S. Fahmy, V. B. Bagos, T. M. Mohammed. Immobilization of citrullus vulgaris urease on cyanuric chloride deae-cellulose ether: preparation and properties. Bioresour. Technol., 1998, 64(2): 121-129.
    [48] S. Karboune, A. Archelas, R. Furstoss, J. Baratti. Immobilization of epoxide hydrolase from Aspergillus niger onto DEAE-cellulose: enzymatic properties and application for the enantioselective resolution of a racemic epoxide. J. Mol. Catal. B: Enzym., 2005, 32(5-6): 175-183.
    [49] C. A. Marquette, L. J. Blum. Self-containing reactant biochips for the electrochemiluminescent determination of glucose, lactate and choline. Sens. Actuators. B: Chem., 2003, 90(1-3): 112-117.
    [50] V. C. Tsafack, C. A. Marquette, F. Pizzolato, L. J. Blum. Chemiluminescent choline biosensor using histidine-modified peroxidase immobilised on metal-chelate substituted beads and choline oxidase immobilised on anion-exchanger beads co-entrapped in a photocrosslinkable polymer. Biosens. Bioelectron., 2000, 15(3-4): 125-133.
    [51] S. G. Lee, S. P. Hong, M. H. Sung. Removal and bioconversion of phenol in wastewater by a thermostable P-tyrosinase. Enzyme Microb. Technol., 1996, 19(5): 374-377.
    [52] L. S. Bean, L. Y. Heng, B. M. Yamin, M. Ahmad. The electrochemical behaviour of ferrocene in a photocurable poly(methyl methacrylate-co-2-hydroxylethyl methacrylate) film for a glucose biosensor. Bioelectrochem., 2005, 65(2): 157-162.
    [53] Y. Ikariyama, S. Yamauchi, T. Yukiashi, H. Ushioda. Micro-enzyme electrode prepared on platinized platinum. Anal. Lett., 1987,20(9): 1791-1801.
    [54] T. Ikeda, H. Hamada, K. Miki, M. Senda. Glucose oxidase-immobilized benzoquinone-carbon paste electrode as a glucose. Agric. Biol. Chem., 1985, 49 (2): 541-543.
    [55] C. W. Chen, J. Anzai, T. Osa. Enzyme sensors based on a coated-wire electrode: effects of buffer concentration and pH on the potentiometric response of penicillin sensor. Chem. Pharm. Bull. (Tokyo), 1988, 36(9): 3671-3674.
    [56] H. Z. Bu, S. S. R. Mikkelsen, A. M. English. NAD(P)H sensors based on enzyme entrapment in ferrocene-containing polyacrylamide-based redox gels. Anal. Chem., 1998, 70(20): 4320-4325.
    [57] T. Lumley-Woodyear, P. Rocca, J. Lindsay, Y. Dror, A. Freeman, A. Heller. Polyacrylamide-based redox polymer for connecting redox centers of enzymes to electrodes. Anal. Chem., 1995, 67(8): 1332-1338.
    [58] S. E. Stanca, I. C. Popescu. Amperometric study of the inhibitory effect of carboxylic acids on tyrosinase. J. Mol. Catal. B: Enzym., 2004, 27(4-6): 221-225.
    [59] H. G. Zhu, R. Srivastava, J. Q. Brown, M. J. McShane. Combined Physical and chemical immobilization of glucose oxidase in alginate microspheres improves stability of encapsulation and activity. Bioconjugate Chem., 2005, 16(6): 1451-1458.
    [60] R. E. Ionescu, S. Cosnier, R. S. Marks. Protease amperometric sensor. Anal. Chem., 200678(18): 6327-6331.
    [61] C. S. Pundir, N. S. Chauhan, M. Bhambi. Activation of polyvinyl chloride sheet surface for covalent immobilization of oxalate oxidase and its evaluation as inert support in urinary oxalate determination. Anal. Biochem., 2008, 374(2): 272-277.
    [62] Y. Wang, Y. L. Hsieh. Immobilization of lipase enzyme in polyvinyl alcohol (PVA) nanofibrous membranes. J. Membr. Sci., 2008, 309(1-2): 73-81.
    [63] F. M. Andreopoulos, M. J. Roberts, M. D. Bentley, J. M. Harris, E. J. Beckman, A. J. Russell. Photoimmobilization of organophosphorus hydrolase within a PEG-based hydrogel. Biotechnol. Bioeng., 1999, 65(5): 579-588.
    [64] Y. S. Lu, M. H. Yang, F. L. Qu, G L. Shen, R. Q. Yu. Enzyme-functionalized gold nanowires for the fabrication of biosensors. Bioelectrochemistry, 2007, 71(2): 211-216.
    [65] A. Josten, M. Meusel, F. Spener, L. Haalck. Enzyme immobilization via microbial transglutaminase: a method for the generation of stable sensing surfaces. J. Mol. Catal. B: Enzym., 1999, 7(1-4): 57-66.
    [66] Y. C. Liu, H. Y. Liu, J. H. Qian, J. Q. Deng, T. Y. Yu. Regenerated silk fibroin membrane as immobilization matrix for peroxidase and fabrication of a sensor for hydrogen peroxide utilizing methylene blue as electron shuttle. Anal. Chim. Acta, 1995, 316(1): 65-72.
    [67] T. Mori, T. Motonaga, Y. Okahata. Cast films of lipid-coated enzymes as selective sensors for disaccharides. Colloids Surf., A, 1999, 146(1-3): 387-395.
    [68] H. Zejli, J. L. Cisneros, I. Naranjo-Rodriguez, B. H. Liu, K. R. Temsamani, J. L. Marty. Phenol biosensor based on sonogel-carbon transducer with tyrosinase alumina sol-gel immobilization. Anal. Chim. Acta, 2008, 612(2): 198-203.
    [69] A. A. Karyakin, E. A. Kotel'nikova, L. V. Lukachova, E. E. Karyakina, J. Wang. Optimal environment for glucose oxidase in perfluorosulfonated ionomer membranes: improvement of first-generation biosensors. Anal. Chem., 2002, 74(7): 1597-1603.
    [70] J. H. Yu, H. X. Ju. Preparation of porous titania sol-gel matrix for immobilization of horseradish peroxidase by a vapor deposition method. Anal. Chem., 2002, 74(14): 3579-3583.
    [71] D. Raffa, K. T. Leung, F. Battaglini. A Microelectrochemical enzyme transistor based on an N-alkylated poly(aniline) and its application to determine hydrogen peroxide at neutral pH. Anal. Chem. 2003, 75(19): 4983-4987.
    [72] D. Horak, M. Karpisek, J. Turkova, M. Benes. Hydrazide-functionalized poly(2-hydroxyethyl methacrylate) microspheres for immobilization of horseradish peroxidase. Biotechnol. Prog., 1999, 15(2): 208-215.
    [73] F. Trudeau, F. Daigle, D. Leech. Reagentless mediated laccase electrode for the detection of enzyme modulators. Anal. Chem., 1997, 69(5): 882-886.
    [74] H. H. Kim, Y. C. Zhang, A. Heller. Bilirubin oxidase label for an enzyme-linked affinity assay with O_2 as substrate in a neutral pH NaCl solution. Anal. Chem., 2004, 76(8): 2411-2414.
    [75] R. Villalonga, A. Fujii, H. Shinohara, S. Tachibana, Y. Asano. Covalent immobilization of phenylalanine dehydrogenase on cellulose membrane for biosensor construction. Sens. Actuators, B, 2008, 129(1): 195-199.
    [76] L. S. Britta, C. G. Juan. Electron transfer to a gold electrode from cytochrome oxidase in a biomembrane via a polyelectrolyte film. Langmuir, 1998, 14(23): 6705-6708.
    [77] M. Portaccio, M. El-Masry, N. R. Diano, A. De Maio, V. Grano, M. Lepore, P. Travascio, U. Bencivenga, N. Pagliuca, D. G. Mita. An amperometric sensor employing glucose oxidase immobilized on nylon membranes with different pore diameter and grafted with different monomers. J. Mol. Catal. B: Enzym., 2002, 18(1-3): 49-67.
    [78] H. Zheng, H. G. Xue, Y. F. Zhang, Z. Q. Shen. A glucose biosensor based on microporous polyacrylonitrile synthesized by single rare-earth catalyst. Biosens. Bioelectron., 2002, 17(6-7): 541-545.
    [79] H. Sangodkar, S. Sukeerthi, R. S. Srinivasa, R. Lal, A. Q. Contractor. A biosensor array based on polyaniline. Anal. Chem., 1996, 68(5): 779-783.
    [80] D. R. Ling, G. Q. Wu, C. Wang, F. Wang, G. Q. Song. The preparation and characterization of an immobilized L-glutamic decarboxylase and its application for determination of L-glutamic acid. Enzyme Microb. Technol., 2000, 27(7): 516-521.
    [81] E. J. Tomotani, M. Vitolo. Immobilized glucose oxidase as a catalyst to the conversion of glucose into gluconic acid using a membrane reactor. Enzyme Microb. Technol., 2007, 40(5): 1020-1025.
    [82] S. X. Zhang, Y. M. Niu, C. Q. Sun. Construction of covalently attached enzyme multilayer films based on the photoreaction of diazo-resins and glucose oxidase. Electrochim. Acta, 2004, 49(26): 4777-4786.
    [83] B. Serra, S. Jimenez, M. L. Mena, A. J. Reviejo, J. M. Pingarron. Composite electrochemical biosensors: a comparison of three different electrode matrices for the construction of amperometric tyrosinase biosensors. Biosens. Bioelectron., 2002, 17(3): 217-226.
    [84] H. C. Shu, N. P. Wu. A chemically modified carbon paste electrode with D-lactate dehydrogenase and alanine aminotranferase enzyme sequences for D-lactic acid analysis. Talanta, 2001, 54(2): 361-368.
    [85] S. K. Beh, G. J. Moody, J. D. R. Thomas. Effect of pre-treatment of platinum for modified platinum wire glucose oxidase amperometric electrodes. Analyst, 1989, 114(1): 29-32.
    [86] H. C. Yoon, M. Y. Hong, H. S. Kim. Functionalization of a poly(amidoamine) dendrimer with ferrocenyls and its application to the construction of a reagentless enzyme electrode. Anal. Chem., 2000, 72(18): 4420-4427.
    [87] M. Darder, E. Casero, F. Pariente, E. Lorenzo. Biosensors based on membrane-bound enzymes immobilized in a 5-(Octyldithio)-2-nitrobenzoic acid layer on gold electrodes. Anal. Chem., 2000, 72(16): 3784-3792.
    [88] J. S. Marcus, B. David, T. Haruyama, A. Masuo. The role of polypyrrole as charge transfer mediator and immobilization matrix for D-fructose dehydrogenase in a fructose sensor. Biosens. Bioelectron., 1997, 12(12): 1169-1182.
    [89] V. Christophe, F. Silvia, T. M. Canh. Amperometric tyrosinase based biosensor using an electrogenerated polythiophene film as an entrapment support. Talanta, 2003, 59(3): 535-544.
    [90] A. Griffith, A. Glidle, J. M. Cooper. Probing enzyme polymer biosensors using X-ray photoelectron spectroscopy: determination of glucose oxidase in electropolymerised films. Biosens. Bioelectron., 1996, 11(6-7): 625-631.
    [91] W. J. Sung, H. B. You. A glucose oxidase electrode based on electropolymerized conducting polymer with polyanion-enzyme conjugated dopant. Anal. Chem., 2000, 72(9): 2177-2181.
    [92] M. Kanungo, A. Kumar, A. Q. Contractor. Microtubule sensors and sensor array based on polyaniline synthesized in the presence of poly(styrene sulfonate).Anal.Chem.,2003,75(21):5673-5679.
    [93]金利通,赵桂珠,方禹之.聚邻苯二胺修饰电极抗坏血酸氧化酶生物传感器的研究.高等学校化学学报,1994,5(2):189-192.
    [94]罗颖华,郑东升,张荣坤,汪瑾.聚吡咯电化学固定化胆固醇氧化酶电极的电流响应及应用.高等学校化学学报,1991,12(10):1320-1322.
    [95]P.N.Bartlett,P.Tebbutt,C.H.Tyrrell.Electrochemical immobilization of enzymes.3.Immobilization of glucose oxidase in thin films of electrochemically polymerized phenols.Anal.Chem.,1992,64(2):138-142.
    [96]傅谊,马建标,何炳林,导电聚合物酶电极的研究概况,功能聚合物学报,1997,10(3):443-448.
    [97]K.D.Trimukhe,S.Bachate,D.V.Gokhale,A.J.Varma.Metal complexes of crosslinked chitosans:Part Ⅱ.An investigation of their hydrolysis to chitooligosaccharides using chitosanase.Int.J.Biol.Macromol.,2007,41(5):491-496.
    [98]Z.Sasvari,B.Asboth.Crosslinking of glucoamylases via carbohydrates hardly affects catalysis but impairs stability.Biotechnol.and Bioeng.,1999,63(4):459-463.
    [99]J.Bryjak,A.W.Trochimczuk.Immobilization of lipase and penicillin acylase on hydrophobic acrylic carriers.Enzyme Microb.Technol.,2006,39(4):573-578.
    [100]I.R.W.Z.Oliveira,S.C.Fernandes,I.C.Vieira.Development of a biosensor based on gilo peroxidase immobilized on chitosan chemically crosslinked with epichlorohydrin for determination of rutin.J.Pharm.Biomed.Anal.,2006,41(2):366-372.
    [101]W.J.Cho,H.J.Huang.An amperometric urea biosensor based on a polyaniline-perfluorosulfonated ionomer composite electrode. Anal. Chem., 1998, 70(18): 3946-3951.
    [102] R. J. Geise, J. M. Adams, N. J. Barone, A. M. Yacynych. Electropolymerized films to prevent interferences and electrode fouling in biosensors. Biosens. Bioelectron., 1991, 6(2): 151-160.
    [103] T. Nakaminami, S. I. Ito, S. Kuwabata, H. Yoneyama. Amperometric determination of total cholesterol at gold electrodes covalently modified with cholesterol oxidase and cholesterol esterase with use of thionin as an electron mediator. Anal. Chem., 1999, 71(5): 1068-1076.
    [104] M. B. Madaras, R. P. Buck. Miniaturized biosensors employing electropolymerized permselective films and their use for creatinine assays in human serum. Anal. Chem., 1996, 68(21): 3832-3839.
    [105] Z. Matharu, G. Sumana, S. K. Arya, S. P. Singh, V. Gupta, B. D. Malhotra. Polyaniline Langmuir-Blodgett film based cholesterol biosensor. Langmuir, 2007, 23(26): 13188-13192.
    [106] T. M. Canh, G. Broun. Construction and study of electrodes using crosslinked enzymes. Anal. Chem., 1975,47(8): 1359-1364.
    [107] D. R. Thevenot, R. Sternberg, P. R. Coulet, J. Laurent, D. C. Gautheron. Enzyme collagen membrane for electrochemical determination of glucose. Anal. Chem., 1979, 51(1): 96-100.
    [108] N. Rahni, A. Mohammad, G. G. Guilbault, G. D. O. Neto. Immobilized enzyme electrode for the determination of oxalate in urine. Anal. Chem., 1986, 58(3): 523-526.
    [109] M. Gamella, S. Campuzano, A. J. Reviejo, J. M. Pingarron. Integrated multienzyme electrochemical biosensors for the determination of glycerol in wines. Anal. Chim. Acta, 2008, 609(2): 201-209.
    [110] N. Vasileva, T. Godjevargova. Study on the behaviour of glucose oxidase immobilized on microfiltration polyamide membrane.J.Membr.Sci.,2004,239(2):157-161.
    [111]Y.Q.Zhang.Natural silk fibroin as a support for enzyme immobilization.Biotechnol.Adv.,1998,16(5-6):961-971.
    [112]陈石根,周润琦编著.酶学.复旦大学出版社,2001年,142.
    [113]L.B.Jr Wingard,L.A.Cantin,J.F.Castner.Effect of enzyme-matrix composition on potentiometric response to glucose using glucose oxidase immobilized on platinum.Biochim.Biophys.Acta.1983,748(1):21-27.
    [114]Y.Yang,M.Yang,H.Wang,L.Tang,G.Shen,R.Yu.Inhibition biosensor for determination of nicotine.Anal.Chim.Acta,2004,509(2):151-157.
    [115]M.K.Sezginturk,E.Dinckaya.Direct determination of sulfite in food samples by a biosensor based on plant tissue homogenate.Talanta,2005,65(4):998-1002.
    [116]G.M.Whitesides,J.P.Mathias,C.T.Seto.Molecular self-assembly and nanochemistry:a chemical strategy for the synthesis of nanostructures.Science,1991,254(7):1312-1319.
    [117]任恕.膜受体与传感器.北京:科学出版社,1996,86.
    [118]C.L.D.Gibb,B.C.Gibb.Estimating the efficiency of selfassemblies.J.Supramol.Chem.,2001,1(1):39-52.
    [119]C.C.You,F.Wurthner.Self-Assembly of ferrocenefunctionalized perylene bisimide bridging ligands with Pt(Ⅱ)corner to electrochemically active molecular squares.J.Am.Chem.Soc.,2003,125(32):9716-9725.
    [120]Z.Peng,S.Dong.Formation of a self-assembled monolayer of 2-Mercapto-3-n-octylthiophene on gold.Langmuir,2001,17(16):4904-4909.
    [121]D.Brandl,C.Schoppmann,C.Tomaschko,M.Schurr,H.Voit.Vacuum stability of Langmuir-Blodgett films of fatty acids and fatty acid salts.Thin Solid Films,1995,256(1-2):220-225.
    [122]B.Dorothee,H.Georg,R.Laurence,H.Rolf,K.Gerolf,W.Adrian,S.Johanna,O.Peter,E.Markus,D.S.Nicholas.Highly oriented,self-assembled alkanephosphate monolayers on tantalum(Ⅴ)oxide surfaces.Langmuir,1999,15(13):4324-4327.
    [123]R.M N V Kumar.A review of chitin and chitosan applications.React.Funct.Polym.,2000,46(1):1-27.
    [124]E.Khor,L.Y.Lim.Implantable applications of chitin and chitosan.Biomater.,2003,24(13):2339-2349.
    [125]P.Chassary,T.Vincent,E.Guibal.Metal anion sorption on chitosan and derivative materials:a strategy for polymer modi.cation and optimum use.React.Funct.Polym.,2004,60(1):137-149.
    [126]F.Li,P.Du,W.Chen,S.S.Zhang.Preparation of silica-supported porous sorbent for heavy metal ions removal in wastewater treatment by organic-inorganic hybridization combined with sucrose and polyethylene glycol imprinting.Anal.Chim.Acta,2007,585(2):211-218.
    [127]T.C.Yang,C.F.Li,C.C.Chou.Cell age,suspending medium and metal ion influence the susceptibility of Escherichia coli O157:H7 to water-soluble maltose chitosan derivative.Int.J.Food Microbiol.,2007,113(3):258-262.
    [128]李琳,张书胜,励留柱,毛陆原.以矽烷化矽胶为基质交联壳聚糖对重金属吸附的研究.分析科学学报,2005,21(5):520-523.
    [129]Q.J.Xie,J.Wang,A.H.Zhou,Y.Y.Zhang,H.W.Liu,Z.N.Xu,Y.Yuan,M.Y.Deng,S.Z.Yao.A study of depletion layer effects on equivalent circuit parameters using an electrochemical quartz crystal impedance system.Anal.Chem.,1999,71(20):4649-4656.
    [130]X.M.Tu,Q.J.Xie,C.H.Xiang,Y.Y.Zhang,S.Z.Yao.Scanning electrochemical microscopy in combination with piezoelectric quartz crystal impedance analysis for studying the growth and electrochemistry as well as microetching of poly(o-phenylenediamine)thin films.J.Phys.Chem.B,2005,109(9):4053-4063.
    [131]傅献彩,沈文霞,姚天扬.物理化学[第4版],北京:高等教育出版社,2000:862.
    [132]Y.H.Lin,F.Lu,Y.Tu,Z.F.Ren.Glucose biosensors based on carbon nanotube nanoelectrode ensembles.Nano Lett.,2004,4(2):191-195.
    [133]B.Wang,B.Li,Z.Wang,G.Xu,Q.Wang,S.Dong.Sol-gel thin-film immobilized soybean peroxidase biosensor for the amperometric determination of hydrogen peroxide in acid medium.Anal.Chem.1999,71(10):1935-1939.
    [134]W.Jin,J.D.Brennan.Properties and applications of proteins encapsulated within sol-gel derived materials.Anal.Chim.Acta,2002,461(1):1-36.
    [135]S.Dong,X.Chen.Some new aspects in biosensors.Rev.Mol.Biotech.,2002,82(4):303-323.
    [136]H.Elzanowska,E.Abu-Irhayem,B.Skrzynecka,V.I.Birss.Hydrogen peroxide detection at electrochemically and sol-gel derived Ir oxide films.Electroanalysis,2004,16(6):478-790.
    [137]L.Coche-Guerente,S.Cosnier,P.Labbe.Sol-gel derived composite materials for the construction of oxidase/peroxidase mediatorless biosensors.Chem.Mater.,1997,9(6):1348-1352.
    [138]V.Glezer,O.Lev.Sol-gel vanadium pentaoxide glucose biosensor. J.Am.Chem.Soc.1993,115(6):2533-2534.
    [139]U.Narang,P.N.Prasad,F.V.Bright,K.Ramanathan,N.D.Kumar,B.D.Malhotra,M.N.Kamalasanan,S.Chandra.Glucose biosensor based on a sol-gel-derived platform.Anal.Chem.1994,66(19):3139-3144.
    [140]C.J.Brinker,G.W.Scherer.Sol-gel science:The physics and chemistry of sol-gel processing.Academic Press,Boston,MA,1990,172.
    [141]A.D.Pozzo,L.Vanini,M.Fagnoni,M.Guerrini,A.De Benedittis,R.A.A.Muzzarelli.Preparation and characterization of poly(ethylene glycol)-crosslinked reacetylated chitosans.Carbohydr.Polym.,2000,42(2):201-206.
    [142]万俊杰,钟宏,醌胺聚合物的研究进展,材料导报,2004,18(4):37-39.
    [143]R.J.Whitley,A.W.Meikle,N.B.Watts.In:C.A.Buurtis,E.R.Ashwood Edrs.Tietz Textbook of Clinical Chemistry,2nd Edn.Saunders:Philadelphia,1994.1793.
    [144]邹冈.基础神经药理学.北京:科学出版社,1999.203.
    [145]P.M.Ajayan,Q.Stephan,C.Colliex,D.Trauth.Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite.Science,1994,265(5176):1212-1214.
    [146]J.Sandler,M.S.P.Shaffer,T.Prasse,W.Bauhofer,K.Schulte,A.H.Windle.Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties.Polym.,1999,40(21):5967-5971.
    [147]A.Allaoui,S.Bai,H.M.Cheng,J.B.Bai.Mechanical and electrical properties of a MWNT/epoxy composite.Compos.Sei.Technol,2002,62(15):1993-1998.
    [148] M. Hughes, G. Z. Chen, M. S. Shaffer, D. J. Fray, A. H. Windle. Electrochemical capacitance of a nanoporous composite of carbon nanotubes and polypyrrole. Chem. Mater., 2002, 14(4): 1610-1613.
    [149] J. Y. Liu, S. J. Tian, W. Knoll. Properties of polyaniline/carbon nanotube multilayer films in neutral solution and their application for stable low-potential detection of reduced β-Nicotinamide Adenine Dinucleotide. Langmuir, 2005, 21(12): 5596-5599.
    [150] J. Zhang, J. K. Lee, Y. Wu, R. W. Murray. Photoluminescence and electronic interaction of anthracene derivatives adsorbed on sidewalls of single-walled carbon nanotubes. Nano Lett., 2003, 3(3): 403-407.
    [151] L. Gorton. Chemically modified electrodes for the electrocatalytic oxidation of nicotinamide coenzymes. J. Chem. Soc. Faraday Trans., 1986, 82(9): 1245-1258.
    [152] R. W. Coughlin, M. Aizawa, B. F. Alexander, M. Charles. Simplified flow reactor for electrochemically driven enzymatic reactions involving cofactors. Biotechnol. Bioeng., 1975, 17(2): 515-521.
    [153] H. Jaegfeldt, A. Torstensson, G. Johanasson. Electrochemical oxidation of reduced nicotinamide adenine dinucleotide directly and after reduction in an enzyme reactor. Anal. Chim. Acta, 1978, 97(1): 221-226.
    [154] A. Silber, C. Brauchle, N. Hampp. Electrocatalytic oxidation of reduced nicotinamide adenine dinucleotide(NADH) at thick-film gold electrodes. J. Electroanal. Chem., 1995, 390(1): 83-89.
    [155] W. Blaedel, R. Jenkins. Electrochemical oxidation of reduced nicotinamide adenine dinucleotide. Anal. Chem., 1975, 47(8): 1337-1343.
    [156] J. Wang, L. Anges, T. Martinez. Scanning tunneling microscopic probing of surface fouling during the oxidation of nicotinamide coenzymes. Bioelectrochem. Bioenerg., 1992, 29(1): 215-221.
    [157] J. Chen, J. C. Bao, C. X. Cai. Direct electrochemical oxidation of dihydronicotiamide adenine dinucleotide(NADH) at an ordered carbon nanotubes electrode. Chin. Chem. Letters, 2003, 14(11): 1171-1174.
    [158] C. Degrand, L. L. Miller. An electrode modified with polymer-bound dopamine which catalyzes NADH oxidation. J. Am. Chem. Soc, 1980, 102(18): 5728-5732.
    [159] E. Lorenzo, L. Sanchez, F. Pariente, J. Tirado, H. D. Abruria. Thermodynamics and kinetics of adsorption and electrocatalysis of NADH oxidation with a self-assembling quinone derivative. Anal. Chim. Acta, 1995, 309(1): 79-88.
    [160] M. G. Zhang, W. Gorski. Electrochemical sensing based on redox mediation at carbon nanotubes. Anal. Chem. 2005, 77(13): 3960- 3965.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700