用户名: 密码: 验证码:
白藜芦醇的量子化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文应用量子化学的分子轨道理论(HF)和密度泛函理论(DFT),在不同的基组水平6-31G、6-31G(D)、6-31+G(D)、6-31G~(**)和CEP-4G上对白藜芦醇进行几何结构全优化(Opt),包括形成氢键时的几何结构优化,以及频率和热力学性质,红外(IR)、拉曼(Ramon)、紫外(CIS)光谱研究;对超精细耦合常数(Prop),势能面扫描(SCAN),溶剂模拟(SCRF(IPCM)),磁学性质(NMR)等进行了量子化学研究。此外,对白藜芦醇与葡萄糖形成的糖苷进行了几何结构全优化,热力学性质和红外光谱研究。
     几何结构优化计算得到了白藜芦醇的精细几何结构参数、电荷分布、能量、偶极矩等数据。对白藜芦醇分子内氢键,白藜芦醇与水、甲醇、乙醇形成氢键进行全优化计算,以此推测其药理作用。计算了25℃和37℃时白藜芦醇的频率和热力学性质,红外和紫外光谱的计算结果与实验值比煦均符合良好。溶剂模拟研究得到了白藜芦醇在溶剂水、甲醇、乙醇中的电荷和能量等数据,结果表明乙醇和水的混合溶剂提取功效较好,为白藜芦醇的提取及分离提供了理论依据。势能面扫描得到了白藜芦醇的最低势能点和最大的电荷状态。采用连续组规范变换法(CSGT)、单规范中心法(single gauge origin)、指定原子中心作为规范中心方法(IGAIM)3种方法进行磁性研究,得到了磁化系数和磁屏蔽常数值,结果表明,CSGT法和IGAIM法较为理想。超精细耦合常数的研究得到了白藜芦醇的静电场力常数及电场梯度等相关数据,其中一维和三维的数据与全优化计算电荷结果吻合。
     白藜芦醇苷的几何结构优化和热力学性质研究得到了精细几何结构参数、电荷分布、能量、极矩和频率等数据,以此可以推测白藜芦醇苷药理作用。
HF and DFT of quantum chemistry has been used to research resveratrol at difierent basis sets6-31G,6-31G(D),6-31+G(d)、6-31G料**,CEP-4G)ldyel,including the molecular geometries and electronic structures optimization of resveratrol,with hydrogen bond considered,and frequency and thermodynamics(IR,Raman),UV(CIS),anisotropic hyperfine coupling constants(PROP),potemial eriergy surface(PES)scan,solVents(methyl aleohol,water,and etharlol)simulate calculation,and NMR shielding tensors and magnetic susceptibilities,etc.In addition the molecular geometries electronic structures,frequency and thermodynamics of polydatin have been calculated at the B3LYP/6-31G(D)level of DFT.
     Hyperfitie geometries and electronic structures parameters,charge distributing,energy and polar distance have been got from optimization calculation of resveratrol to presume factors of its pharmacological function,among which hydrogen bond(HB inside molecule of resveratrol,HB between resveratrol and water,HB between resveratrol and methyl alcohol,HB between resveratrol and ethanol)has been calculated in 4 cases.Frequency and thermodynamics(includinf25℃and 37℃of resveratrol data carl give some information about resveratrol in body.Spectrum research can contrast experimental pedigree,among which IR and UV basically consistent.Solvcnts(mgthyl alcohol,water,and ethanol)simulate calculation offered charge and energy data which can give useful information for itS distilling and separation of resveratrol in solvents(methyl alcohol,water,and ethanol),and water mixing ethanol is better for distilling resveratrol.Potential eriergy surface(PES)scan offered minimum potential eilergy surface maximal charge state.NMRshielding terlsors and magnetic susceptibilities got from 3 methods(Contirluous set of Gauge Trailsformation,CSGD,single gauge origin,and(IGAIM method),reIiabIe rgsuIt is from method I and mdthnd 3.Anisotropic hyperfine coupling constants(PROP)of resveratrol offered the potential,electric field,and electric neld gradient at each nucleus,amorlg which plallar data are less reliable.
     Hyperfilie geometries and electronic strLlctures parameters,charge distributing,energy and polar distance and frequency and thermodynamics data have been got fom optimization and frequenty calculatiOn of polydatin,so we can use them to prestlme the relation between them andpharmacological function of polydatin.
引文
[1] 朱佐江.中华医学杂志,1989,69(5):279
    [2] 单春文.药学学报,1988,23(5):394
    [3] 单春文.中国药理学报,1990,11(6):527
    [4] 姜桥,蔡同一,刘永忠,等.食品与发酵工业[J],1994,6:129.
    [5] 狄莹,石碧.化学通报[J],1999,3:4.
    [6] 赵伟杰,郭永油,王世盛,等.中国中药杂志[J],1998,23(10):619.
    [7] 陈雷,杨福全,张天佑,等.分析测试学报[J],2000,19(4):60.
    [8] 杨连春,王峰,刘敏,等.华西药学杂志[J],2000,15(2):81284.
    [9] 陈晓,龙韫先,邓峰生.化学研究与应用[J],1999,5:5522554.
    [10] 郭敏,余晓晖,叶建清,等.甘肃中医学院学报[J],1999,16(3):51252.
    [11] 丁永胜,何丽一.药学学报[J],2000,35(6):4542456.
    [12] 任守增,王振月,刘丽梅,等.中医药信息[J],2000,1:60
    [13] 赵霞,陆阳,陆泽乃.中草药[J],1998,29(120):838
    [14] 戴群,赵光鳌.工业微生物[J],1999,29(3):22223.
    [15] 韩雅珊,陈雷,戴蕴青.色谱[J],1999,17(4):3662368.
    [16] 吴叶,程宁,洪筱坤.中成药[J],1999,21(5):22622281.
    [17] 栾天罡,李攻科,张展霞.中山大学学报(自然科学报)[J],2001,40(1):55.
    [18] M. Born, P. Oppenheimer, Zur Quantentheorie der Molekeln Ann. Phsik. (Quantum theory of the molecules Ann. Phys) 1927, 84, 457-484
    [19] (a) W. J. Hehre, L. Radom, P. V. R. Schleyer. Ab initio molecular orbital theory. John Wiley & Sons, Inc. 1986.
    (b) D. A. McQuarrie, Quantum chemistry university science books: Milly Vally. CA. 1983
    [20] (a) 唐敖庆,杨忠志,李前树.量子化学.北京,科学出版社,1982
    (b) 徐光宪,黎乐民,王德民.量子化学基本原理和从头计算法.北京,科学出版社.1985
    [21] P. O. Lowdin. Correlation Problem in many-electronic quantum mechanics. I. review of different approaches and discussion of some current ideas. Adv Chem Phys. 1959, 2, 207-322
    [22] J. A. Pople, R. Seeger, R. Krishnan. Variational configuration interaction Methods and comparison with Perturbation Theory. Int J Quant Chem Syrup. 1977, 11, 149-163.
    [23] B. Foresman, M. Head-Gordon, J. A. Pople, M. J. Frisch. Toward a systematic molecular orbital theory for excited states. J Phys Chem. 1992, 96, 135-149
    [24] R. Krishnan, H. B. Schlegel, J. A. Pople. Derivative studies in configuration-interaction theory. J Chem Phys. 1980, 72, 4654-4655
    [25] B. R. Brooks, W. D. Laidig, P. Saxe, J. D. Goddard, Y. Yamaguchi, H. F. Schaefer. Analytic gradients from correlated wave functions via the two-particle density matrix and the unitary group approach. J Chem Phys. 1980, 72, 4652-4653
    [26] E. A. Salter, G. W. Trucks, R. J. Bartlett. Analytic energy derivatives in many-body methods. I First derivatives. J Chem Phys. 1989, 90, 1752-1766
    [27] K. Raghavachari, J. A. Pople. Complete basis set correlation energies. I. The asymptotic convergence of pair natural orbital expansions. Int J Quant Chem. 1981, 20, 167-174
    [28] J. A. Pople, M. Head-Gordon, K. Raghavachari. Quadratic configuration interaction. A general technique for determining electron correlation energies. J Chem Phys. 1987, 87, 5968-5975
    [29] J. Cioslowski. Chem Phys Lett. A new robust algorithm for fully automated determination of attractor interaction lines in molecules 1994, 219, 151-154
    [30] H. B. Schlegel, M. A. Robb. MCSCF gradient optimization of the H_2CO H_2+CO transition structure. Chem Phys Lett. 1982, 93, 43-46
    [31] R. H. Eade, M. A. Robb. Direct minimization in mc scf theory, the quasi-newton method. Chem Phys Lett. 1981, 83, 362-368
    [32] D. Hegarty, M. A. Robb. Principles of direct 4-component relativistic SCF: application to caesium auride. Mol phys. 1979, 38, 1795-1798
    [33] P. Hohenberg, W. Kohn. Inhomogeneous Electron Gas. Phys Rev. 1964, 136, B864-B871
    [34] W. Kohn, L. Shah. Self-Consistent Equations Including Exchange and Correlation Effects. J Phys Rev. 1965, 140, A1133112 J. C. Slater. Quantum Theory of Molecular and Solids. Vol. 4: The Self-Consistent Field for Molecular and solids McGraw-Hill: New York, 1974
    [35] D. E. Salahub, M. C. Zerner, Eds. The Challenge of d and f Electrons ACS: Washington D. C. 1989
    [36] R. G. Parr, W. Yang. Density-functional theory of atoms and molecules Oxford Univ. Press: Oxford, 1989
    [37] J. A. Pople, P. W. M. Gill, B. G. Johnson. Kohn-Sham density-functional theory within a finite basis set. Chem Phys Lett, 1992, 199, 557-560
    [38] B. G. Johnson, M. J. Frisch. An implementation of analytic second derivatives of the gradient-corrected density functional energy. J Chem Phys, 1994, 100, 7429-7442
    [39] J. K. Labanowski, J. W. Andzelm. Density Functional Methods in Chemistry, Springer-Verlag: New York, 1991
    [40] 黄美纯,密度泛函理论的若干进展,物理化学(A),Vol.20,No.3,Sept.,2000,P200-218.
    [41] Hybertsen MS, Louie SG. Phys. Rev.,1986, B34: 5390; 1987, B35: 5585. 谢希德,陆栋.固体能带理论.复旦大学出版社,1998,第七章.
    [42] Godby R W, Schluder M, Sham LJ. phys. Rev., 1988, B37: 101 59.
    [43] GodbyRW, etalphys. Rev., 1987, B35: 4170; phys. Rev., Lett, 1989, 62: 1169.
    [44] Hamada N, Hwang M, Freeman AJ. phys. Rev., 1990, B49; 3620
    [45] Shirley L, Louie SG. phys. Rev., Lett, 1993, 71: 33.
    [46] Araysetianwan F, Gunnarsson O. Rep. Prog. phys., 1998, 61: 237-312.
    [47] Sharp RT, Horton GK. Phys. Rev., 1953, 90: 317; Talman JD, Shadwick WF. Phys. Rev., 1976. A14: 36, and (35).
    [48] Burke K, Petersilka M, Gross E K U. cond-mat/000115312 Jan2000.
    [49] Petersilka M, Rossmann UJ, Gross E K U. phys. Rev. Lett., 1996, 76: 1212.
    [50] Runge E, Gross E K U. phys. Rev. Lett., 1984, 52: 997.
    [51] Gross E K U, Kohn W. Adv. Quant. Chem.., 1990, 21: 255.
    [52] 唐敖庆,李前树,高碳原子簇电子结构的计算方法及应用,科学通报,1997年06期.
    [53] 任杰,陈志达,密度泛函理论在分子磁学中的应用,化学学报,2003年6卷第十期1537-1542.
    [54] 郑青榕,顾安忠,杨晓东,鲁雪生碳纳米管低温吸附储氢特性的密度泛函理论(DFT)研究,低温与特气,Vol.19,No.6 Dec.,2001.
    [55] 付东 陆九芳 刘金晨 李以圭,用密度泛函理论研究二元体系的液液界面张力,化工学报 Vol.53 No9(2002).
    [56] 李明,罗小玲,唐典永,铑催化烯烃氢甲酰化反应的密度泛函研究,化学学报,Vol.62,2004No.12,1 128-1133.
    [57] 王彦华,孙元红,王传奎不同溶剂中硝基苯胺分子非线性光学性质的研究3化学物理学报,Vol.17,No.5Oct.2004,:O641.3,O437(A)
    [58] 张梦军,孙立力,黄莺,李志良,以密度泛函理论及相关方法计算电负性标度X,TQ011(A)2002年5月重庆大学学报(自然科学版)Vol.25 No.5第25.卷第5期Journ'1 of Chongqing University(Natural Science Edition)May.2002.
    [59] 于华忠1,李国章1,曹庸1,廖书桥1,龙维珍,虎杖白藜芦醇提取物的干燥方法研究,林产化工通讯 2005年第39卷第1期:TQ91;S789.4(A)1005-3433(2005)01-0031-03
    [60] 余淑娴,应水良,甲级二乙氧基硅烷的合成.南昌大学学报(理科版)2005年4月第29卷第2期
    [61] 孙文华1,杨海健1,徐桂云1,张红江2,东升魁2,降冰片烯加成聚合催化剂的研究进展 石油化工,2004年第33卷第1期.1000-8144(2004)01-0076—06.O643136A
    [62] V. G. Kunde, A. C. Aikin, R. A. Hanel, D. E. Jennings, W. C. Maguire, R. E. Samuelson. C_4H_2, HC_3N and C_2N_2 in Titan's atmosphere. Nature(London). 1981, 292:686-688
    [63] 九保道德.药学杂志(日),1981,35(1):58
    [64] 野野村进.药学杂志(日),1963,83(10):388
    [65] 张喜云.虎杖的化学成分、药理作用与提取分离.天津药学,1999,11(3):13
    [66] 牛丽颖,李晓艳,孟令鹏,郑世钧.桂皮酰哌啶类化合物结构与抗惊活性关系的量子化学研究.计算机与应用化学(J),2004,21(6):854
    [67] 江南,杨儒,丘谨,李敏.2,22二羟甲基丁醛的结构和性质的理论研究.(J),2006.33(1):47
    [68] J. Lorenc. Solvent effect and quantum chemical calaeulations of the electron energy levels for nitro derivatives of 2-(N-methylamino)-picolines. J Molecular Structure 748(2005)91-100.
    [69] R. Ditchfield, W. J. Hehre and J. A. Pople, J. Chem. Phys. 54, 724 (1971).
    [70] 尚兴宏,贡雪东,肖鹤鸣,田禾.(J)4种菁染料化合物结构和性能的密度泛函理论研究.南京理工大学学报,2002,4(26):2.
    [71] A D Becke. J. Chem. Phys., 1993, 98: 5648~5653.
    [72] C Lee, W Yang, R G Parr. Phys. Rev. B, 1988, 37: 785~789.
    [73] F. J. Ramirez, I. Tunon, E. Silla. Amino acid chemistry in solution: structural properties and vibrational dynamics of serine using density functional theory and a continuum solvent model. J. Chemical Physics 30392004)85-96.
    [74] 林梦海,量子化学计算方法与应用,(M)科学出版社(2004)5:196
    [75] 朱立贤,金征宇,虎帐中白藜芦醇提取分离工艺的研究.安徽农业科学,(A)2005,33(1)77—78
    [76] W. Stevens, H. Basch and J. Krauss, J. Chem. Phys. 81, 6026(1984).
    [77] W. J. Stevens, M. Krauss, H. Basch and P. G. Jasien, Can. J. Chem. 70, 612 (1992).
    [78] T. R. Cundari and W. J. Stevens, J. Chem. Phys. 98, 5555 (1993).
    [79] T. Clark, J. Chandrasekhar, G. W. Spitznagel and P. v. R. Schleyer, J. Comp. Chem. 4, 294 (1983).
    [80] R. E. Stratmann, G. E. Scuseria and M. J. Frisch, J. Chem. Phys., submitted (1998).
    [81] J. B. Foresman, M. Head-Gordon, J. A. Pople and M. J. Frisch, "Toward a Systematic Molecular Orbital Theory for Excited States," J. Phys. Chem. 96, 135 (1992).
    [82] J. R. Cheeseman, G. W. Trucks and M. J. Frisch,, in prep. (1998).
    [83] J. R. Cheeseman, M. J. Frisch, G. W. Trucks and T. A. Keith, "A Comparison of Models for Calculation Nuclear Magnetic Resonance Shielding Tensors," J. Chem. Phys. 104, 5497 (1996).
    [84] K. Wolinski, J. F. Hilton and P. Pulay, "Efficient Implementation of the Gauge-Independent Atomic Orbital Method for NMR Chemical Shift Calculations," J. Am. Chem. Soc. 112, 8251 (1990).
    [85] T. A. Keith and R. F. W. Bader, "Calculation of magnetic response properties using a continuous set of gauge transformations," Chem. Phys. Lett. 210, 223 (1993).
    [86] 张喜云.虎杖的化学成分、药理作用与提取分离.天津药学(J),1999,11(3):13
    [87] Seminario J M, Politzer P. Modem Density FunctionalTheory: A Tool for Chemistry[M]. New York: Elsevier, 1995.
    [88] (a) LeeC, Yang W ,Parr R G. Devlopment of the Colle-Salvetti correlation-mergy fomula into a functional of the electron density. Phys Rev B: CondensMatter, 1988, 37(2): 785~789
    (b) Beeke A D. Density-functional themochemistry. Ⅲ The role of exact exchange J ChemPhys, 1993, 98(7): 5 648~5 652
    [89] 宁永成 有机化合物结构坚定与有机波谱学,科学出版社,2000(M):329-356
    [90] 陈林红,尚仁成.硝酸丙酯结构、振动频率和热力学性质的密度泛函理论研究.原子与分子物理学报(J),2002,1(19):1 38~40.
    [91] E. R. Cohen and B. N Taylor, The1986 Adjustment of the Fundamental Physical Constants, CODATA Bulletin(Pergamon, elmsford, NY, 1986), vol. 63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700