用户名: 密码: 验证码:
大鼠肠缺血再灌注致急性肺损伤信号转导机制及白藜芦醇苷的保护作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:探讨小肠缺血再灌注(ischemia/reperfusion,I/R)所致的急性肺损伤(acute lung injury, ALI)信号转导机制和白藜芦醇苷(polydatin, PD)的保护机制。
     方法:224只健康雄性Sprague-Dawley(SD)大鼠,随机分为假手术对照组(C组)、肠缺血再灌注I/R肺损伤组(I/R组),I/R + NS组和I/R + PD治疗组。将大鼠腹腔打开后用暂时性夹持肠系膜上动脉(superior mesenteric artery, SMA)45分钟再松开的方法建立急性I/R肺损伤模型。在SMA松夹同时给予腹腔注射10 mg/kg PD为I/R + PD治疗组,注射生理盐水为I/R + NS组。假手术对照组的操作除不阻断SMA外其余操作与I/R组相同。分别于损伤后0h、0.5h、2h、6h、12h、24h、48h七个不同时间点处死实验大鼠留取大鼠肺标本保存待检。用苏木素-伊红(hematoxylin and eosin,HE)染色肺组织观察其在光镜下的病理形态学变化;用烘干前后肺组织的湿、干重(W/D)称量法测量肺组织水肿情况;比色法检测肺组织髓过氧化物酶(myeloperoxidase,MPO)活性变化;免疫组织化学染色法检测肺组织NF-κBp65和ICAM-1 (CD54)蛋白的表达;RT- PCR法检测肺组织HMGB1mRNA表达。
     结果:肺组织HE染色示假手术对照组仅有轻微的肺间质增宽改变,而I/R和I/R+NS组可见肺泡结构破坏,肺泡隔增宽且肺泡间隔炎性细胞浸润,肺泡腔内有渗出液、红细胞及渗出的炎性细胞,I/R+PD治疗组较I/R+NS组有明显改善。I/R组肺组织W/D值在0.5h、2h、6h、12h及24h升高与假手术对照组比较有显著统计学差异(P<0.01)。I/R组MPO活化表达升高,与假手术对照组在各时间点相比均有显著统计学差异(P<0.01)。I/R组ICAM-1(CD54)表达随肠I/R时间延长而增加,6h达峰值(160.67±21.62/HP),此后稍有下降,24h轻度升高(107.83±20.40/HP),与假手术对照组在各时间点相比均有明显升高(P<0.05)。I/R组MPO与ICAM-1之间存在较强的正相关(P<0.01)。I/R组NF-κBp65表达随肠I/R时间延长而增加,24h达峰值(169.00±22.65/HP),较假手术对照组在各时间点表达有统计学差异(P<0.05)。I/R组HMGB1mRNA随肠I/R时间延长表达升高,24h达峰值(1.81±0.22),较假手术对照组在2h、6h、12h、24h及48h表达有显著统计学差异(P<0.01)。I/R组NF-κBp6与HMGB1mRNA之间存在较强的正相关(P<0.01)。I/R+PD治疗组W/D值在0.5h、2h、6h及12h有显著降低,与I/R+NS组比较有显著统计学差异(P<0.01)。I/R+PD治疗组MPO活化表达较I/R+NS组在各时间点均有明显下降(P<0.05)。I/R+PD治疗组ICAM-1表达下降,在0.5h、2h、6h、12h及24h与I/R+NS组比较均有统计学差异(P<0.05)。I/R+PD治疗组NF-κBp65和HMGB1RNA表达均在2h后下降,与I/R+NS组比较有统计学差异(P<0.05)。
     结论:
     1.运用大鼠小肠缺血再灌注的方法成功建立了急性肺损伤动物模型。
     2. PMNs和ICAM-1表达有相互介导关系,而HMGB1肺内表达升高可能与NF-κB的转录调控有关。
     3. PD可能是通过减少PMNs和ICAM-1表达同时抑制NF-κB的激活,阻断其信号转导通路,下调HMGB1基因表达而实现对损伤肺组织的保护作用。
【Objective】To investigate the mechanism of signal transduction and the protective effect of polydatin (PD) in intestinal ischemia- reperfusion (I/R) induced acute lung injury in rats.
     【Methods】Two hundred and twenty-four Male Sprague-Dawley (SD) rats were randomly divided into four groups, the sham-operation control group (group C), the intestinal I/R induced lung injury group (I/R group), I/R + NS group and I/R + PD treatment group. The I/R induced ALI model was established by temporally clamping the superior mesenteric artery (SMA) for 45 minutes. Either 10 mg/kg PD (I/R + PD treatment group) or normal saline (I/R + NS group) was intraperitoneally administered immediately before the clamp released. The operative procedures of the sham-operation control group were the same as those of I/R group except not clamping the SMA. The rates were sacrificed and the lung tissues were separated at different time points of 0h, 0.5h, 2h, 6h, 12h, 24h or 48h after I/R injury. The pathological changes of lung tissues were examined under the light microscope with hematoxylin and eosin (HE) stain. The lung tissue Wet/dry weight ratio (W/D) were examined. The levels of lung tissue myeloperoxidase (MPO), the neutrophil sequestration indicator, were detected by colorimetric method. Formalin-fixed and paraffin embedded lung tissues were stained with immunohistochemistry technique for nuclear factor-κB(NF-κB) and intercellular adhesion molecule-1 (ICAM-1) detection. The lung tissue High mobility group box 1(HMGB1mRNA) expressions were determined by RT-PCR.
     【Results】Histological changes of the lung tissues showed slight thickening of the alveolar walls in sham-operation control group. There were massive inflammatory cell infiltrations, byperemia and of interstitial lung tissue edema, diffusate, akaryocyte, inflame-cellule in alveolar intracavitary, alveolar wall thickening in I/R group and I/R + NS group. The above lung pathological changes were not so severe in I/R + PD treatment group. The lung tissue wet-to-dry weight ratios markedly rose in I/R group compared with those in sham-operation control group at any corresponding time point of 0.5h, 2h, 6h, 12h and 24h, with statistical significance(P<0.01). The expressions of lung tissue MPO markedly rose in I/R group compared with those in sham-operation control group at any corresponding time point, with statistical significance(P < 0.01). The expressions of lung tissue ICAM-1 increased with time after intestinal I/R, peaked at 6h (160.67±21.62/HP), then decreased, and slightly increase at 24h(170.83±20.40/HP)in I/R group. The expressions of lung tissue ICAM-1 were higher than those in sham-operation control group at any corresponding time point (P < 0.05). There exists a strong positive correlation between MPO and ICAM-1, with statistical significance (P<0.01). The expressions of lung tissue NF-κBp65 in I/R group increased with time after intestinal I/R, peaked at 24h (169.00±22.65/HP). The expressions of lung tissue NF-κBp65 in I/R group was lower than those in sham-operation control group at any corresponding time point (P<0.05). The expressions of lung tissue HMGB1mRNA in I/R group increased with time after intestinal I/R, peaked at 24h (1.81±0.22), The expressions of lung tissue HMGB1mRNA markedly rose in I/R group compared with those in sham-operation control group at any corresponding time point of 2h, 6h, 12h, 24h and 48h, with statistical significance(P<0.01). There exists a strong positive correlation between NF-κBp65 and HMGB1 mRNA, with statistical significance (P<0.01). Lung tissue wet-to-dry weight ratios markedly decreased in I/R + PD treatment group compared with those in I/R + NS group at any corresponding time point of 0.5h, 2h, 6h and 12h,with statistical significance(P<0.01). The expressions of lung tissue MPO in I/R + PD treatment group was lower than those in the I/R + NS group at any corresponding time point (P<0.05). The expressions of lung tissue ICAM-1in I/R + PD treatment group was lower than those in the I/R + NS group at any corresponding time point of 0.5h, 2h, 6h, 12h and 24h (P < 0.05). The expressions of lung tissue NF-κBp65 and HMGB1mRNA in I/R + PD treatment group was lower than those in the I/R + NS group at any corresponding time point of 2h, 6h, 12h, 24h and 48h (P<0.05).
     【Conclusion】
     1. Acute lung injury model was successfully induced by intestinal ischemia/reperfusion injury in rats.
     2. The expressions of PMNs and ICAM-1 inter-mediated each other. The increased lung tissue HMGB1 expressions may be regulated by NF-κB through transcriptional control in intestinal I/R induced ALI.
     3. The protective effect of polydatin may be through decreasing the lung tissue PMNs and ICAM-1 expressions, inhibiting the NF-κB activiation, blocking the signal transduction and down-regulating the expressions of HMGB1 during intestinal I/R induced lung injury.
引文
[1] Takayama M, Ishibashi M, Ishii H, et al. Effects of neutrophil elastase inhibitor (ONO-5046) on lung injury after intestinal ischemia-reperfusion [J]. J Appl Physiol. 2001, 91(4):1800-1807.
    [2] Zou L, Attuwaybi B, C.Kone B, et al. Effects of NF-κB inhibition on mesenteric ischemia-reperfusion injury [J]. Am J Physiol Gastrointest Liver Physiol. 2003, 284(4):G713-G721.
    [3] Tian XF, Yao JH, Li YH, et al. Effect of nuclear factor kappaB on intercellular adhesion molecule 1 expression and neutrophil infiltration in lung injury induce by intestinal ischemia/reperfusion in rats [J]. World J Gastroenterol. 2006, 12(3): 388-392.
    [4] Pullerits R, Brisslert M, Jonsson IM, et al. Soluble receptor for advanced glycation end products triggers a proinflammatory cytokine cascade via β2 integrin Mac-1 [J]. Arthritis Rheum. 2006, 54(12):3898-3907.
    [5] E.Killeen M, A.Englert J, Stolz DB, et al. The phase 2 enzyme inducers ethacrynic acid, dl-sulforaphane and oltipraz inhibit lipopolysaccharide-induced high-mobility group box 1 secretion by RAW 264.7 cells [J]. J Pharmacol Exp Ther. 2006, 316(3):1070-1079.
    [6] Shu SY, Wang XY, Ling ZY, et al. Effect of polydatin on phospholipase A2 in lung tissues in rats with endotoxic shock [J]. Chin J Traumatol. 2004, 7(4): 239-243.
    [7] Fang WH, Yao YM, Shi ZG, et al. The significance of changes in high mobility group-1 protein mRNA expression in rats after thermal injury [J]. Shock. 2002, 17(4):329-333.
    [8] Nagy I, Monge A, Albinger-Hegyi A, et al. NF-κB is required for survival of immature auditory hair cells in vitro [J]. J Assoc Res Otolaryngol. 2005, 6(3): 260-268.
    [9] Flint R, Windsor J. The role of the intestine in the pathysiology and management of severe acute pancreatitis [J]. HPB(Oxford). 2003, 5(2):69-85.
    [10] C.Kurtz C, L.Lindell S, J.Mangino M, et al. Hibernation confers resistance to intestinal ischemia-reperfusion injury [J]. Am J Physiol Gastrointest Liver Physiol. 2006, 291(5):G895-G901.
    [11] Guneli E, Cavdar Z, Islekel H, et al. Erythropoietin protects the intestine against ischemia/reperfusion injury in rats [J]. Mol Med. 2007, 13(9-10):509-517.
    [12] Klebanoff SJ. Myeloperoxidase:friend and foe [J]. J Leukoc Biol. 2005, 77(5): 598-625.
    [13] Usatyuk PV, Natarajan V. Regulation of reactive oxygen species-induced endothelial cell-cell and cell-matrix contacts by focal adhesion kinase and adherens junction proteins [J]. Am J Physiol Lung Cell Mol Physiol. 2005, 289(6): L999-L1010.
    [14] Scheel-Toellner D, Wang K, Assi LK, et a1. Clustering of death receptors in lipid rafts initiates neutrophil spontaneous apoptosis [J]. Biochem Soc Trans. 2004, 32(Pt 5):679-681.
    [15] Gujral JS, Liu J, Farhood A, et al. Functional importance of ICAM-1 in the mechanism of neutrophil-induced liver injury in bile duct-ligated mice [J]. Am J Physiol Gastrointest Liver Physiol. 2004, 286(3):G499-G507.
    [16] Lu YT, Chen PG, Liu SF. Time course of lung ischemia-reperfusion-induced ICAM-1 expression and its role in ischemia-reperfusion lung injury [J]. J Appl Physiol. 2002, 93(2):620-628.
    [17] Karin M. The beginning of the end:IκB kinase (IKK) and NF-κB activation [J] . J Biol Chem. 1999, 274(39):27339-27342.
    [18] Fan C, Li Q, Zhang Y, et al. IkBa and IkBβ possess injury context-specific functions that uniquely influence hepatic NF-κB induction and inflammation [J]. J Clin Invest. 2004, 113(5):746-755.
    [19] Everhart MB, Han W, Sherrill TP et al. Duration and intensity of NF-kappaB activity determine the severity of endotoxin-induced acute lung injury [J]. J Immunol. 2006, 176(8):4995-5005.
    [20] Coimbra R, Melbostad H, Loomis W, et al. LPS-induced acute lung injury isattenuated by phosphodiesterase inhibition:effects on proinflammatory mediators, metalloproteinases, NF-kappaB, and ICAM-l expression [J]. J Trauma. 2006, 60(1):l15-125.
    [21] Matsuda N, Hattori Y, Jesmin S, et al. Nuclear factor-kappaB decoy oligodeoxynucleotides prevent acute lung injury in mice with cecal ligation and puncture-induced sepsis [J]. Mol Pharmacol. 2005, 67(4):1018-l025.
    [22] Park JS,Gamboni-Robertson F,He Q,et al. High mobility group box 1 protein interacts with multiple Toll-like receptors[J].Am J Physiol Cell Physiol. 2006, 290(3): C917-C924.
    [23] Park JS, Svetkauskaite D, He Q, et al. Involvement of Toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein [J]. J Biol Chem. 2004, 279(9):7370-7377.
    [24] Poser I, Golob M, Buettner R, et al. Upregulation of HMG1 leads to melanoma inhibitory activity expression in malignant melanoma cells and contributes to their malignancy phenotype [J]. Mol Cell Biol. 2003, 23(8):2991-2998.
    [25] Ueno H, Matsuda T, Hashimoto S, et al. Contributions of high mobility group box protein in experimental and clinical acute lung injury [J]. Am J Respir Crit Care Med. 2004, 170(12):1310-1316.
    [26] Kim JY, Park JS, Strassheim D, et al. HMGB1 contributes to the developent of acute lung injury after hemorrhage [J]. Am J Physiol Lung Cell Mol Physiol. 2005, 288(5):L958-L965.
    [27] Mantel1 LL, Parrish WR, Ulloa L. HMGB-1 as a therapeutic target for infectious and inflammatory disorders [J]. Shock. 2006, 25(1):4-l1.
    [28] 张明静,王兴勇,卢仲毅. 白藜芦醇苷对内毒素休克肺损伤大鼠 Th1/TH2 失衡的干预作用[J]. 儿科药学杂志. 2003, 9(3):1-3.
    [29] 舒仕瑜,卢仲毅,王兴勇. 白藜芦醇苷对大鼠内毒素休克性肺损伤的保护作用[J]. 中国药房. 2003, 14(3): 143-145.
    [30] 金春华, 刘杰, 黄绪亮, 等. 虎杖苷对心肌细胞收缩性的影响[J]. 中国药理学通报. 2000, 16(4): 400-403.
    [31] 金春华, 赵克森, 刘杰, 等. 虎杖甙对心肌细胞钙的调节作用[J]. 中国病理生理杂志. 2001, 17(2):128-130.
    [32] 黄斌,王兴勇,匡凤梧,等. 白藜芦醇苷对大鼠局灶性脑缺血的保护作用[J].中国急救医学. 2005, 25(3): 192-193.
    [33] 陈莉延,梁标,金勋杰,等. 白藜芦醇苷对大鼠慢性常压低氧性肺动脉高压的防治作用[J]. 实用医学杂志. 2002, 18(8):807-809.
    [34] 申美霞,王少华,熊淑英,等. 白藜芦醇甙对大鼠急性肺损伤模型的保护机制[J]. 南华大学学报·医学版. 2006, 34(1):18-20.
    [35] 陈媛媛,王兴勇,胡语航,等. 大鼠脑缺血再灌注损伤对神经细胞凋亡及白藜芦醇苷的影响作用[J]. 重庆医科大学学报. 2007, 32(11):1147-1150.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700