用户名: 密码: 验证码:
旋流膜分离器处理低浓度含油废水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文基于两相流理论,将旋流分离机理与膜分离机理有机结合,设计了一种新型的旋流膜分离器,用于处理低浓度含油废水。分离器内的旋转流产生的剪切力可以有效抑制浓差极化,并且减轻油滴在膜面的沉积。
     基于流体力学基本方程,分析旋流膜分离器内的流体力学特性。讨论了分离器内两相流体运动特征,求解出三维速度,分离器内压力随半径的分布,以及轴向和切向剪切力的分布,最后初步探讨了主流体中油滴的受力情况。
     研究旋流膜分离器处理低浓度含油废水的影响因素。实验结果表明:提高压差可以使膜的初始通量增大,但其衰减也较快,实验确定的最佳压差为0.01MPa;增加入口流量有助于提高膜通量和截留率;含油废水浓度越大,通量衰减越快,最后的稳定通量越小。含油废水经处理后,透过液油浓度低于10mg/L。研究了低浓度含油废水处理过程中的膜污染程度和清洗方法。结果表明:膜污染程度较小,膜本身阻力占总阻力的76.9%;分别用清水反冲、酸洗、碱洗和石油醚清洗四种方法,对运行超过6小时的膜进行清洗,通量恢复率均超过了80%。说明采用旋流膜分离器可以有效消除或减轻膜污染和浓差极化,被污染的膜更容易清洗。
Combined the mechanism of rotary flow separation and membrane separation, a new rotary flow membrane separator was designed based on the theory of two-phase flow to apply to the treatment of low concentration oily wastewater. The concentration polarization is avoided by rotation of feed and the sediments on membrane were reduced effectively by cut force from flow rotation.
     Based on the basic equations of hydrodynamics, the dynamical characters of the fluid in the separator were analyzed. The movement Characters of two-phase fluid in the separator were discussed; the three-dimension velocity, the distributing of the pressure along with the radius and the distributing of the cut force in the axis and radial were given. In the end, the force suffering of the oil drop was simply discussed.
     The influencing factors of the treatment of oily wastewater with lower concentration through hydrocyclone membrane separator were researched. The results of experiments show that the increase of membrane pressure brings about the improvement of the initial flux, which induces the flux decline sooner, and the optimum membrane pressure in the study is 0.01MPa. Increase of the inlet flux redounds to the improvement of the separation efficiency and the oil retention ratio. Along with the increase of feed concentration, the steady flux declines and rejection ratio of oil raise. After treatment, the oil concentration in permeation fluid is lower than 10mg/L. The membrane fouling and cleaning methods in the process of the treatment of oily wastewater with lower concentration were researched. The results show that the degree of membrane fouling is less; the resistance of membrane is 76.9% account for the total resistance. The methods of backwash, acid wash, alkaline wash and petroleum ether wash were used to clean the fouling membrane after 6h running respectively, and the flux recoveries of membrane are all over 80%. Those results indicate that the hydrocyclone membrane separation could avoid or lighten membrane fouling and concentration polarization, and the membrane is easier to clean after fouling.
引文
1 戴军,袁惠新,俞建峰.膜技术在含油废水处理中的应用.膜科学与技术,2002,22(2):59-64
    2 桑义敏,张广远,陈家庆.膜法处理含油废水研究进展.化工环保,2006,26(2):122-125
    3 任玉森.含油废水处理技术综述.节能环保技术,2003,7:9-12
    4 国家环境保护局.膜法分离技术及其应用.北京:中国环境科学出版社.1991
    5 尹先清.含油污水处理技术研究.工业水处理,2000,20(3):29-31
    6 诸林,潘亿永.含油污水处理技术进展.上海环境科学,1991,16(8):38-41
    7 Gryta M, Karakulski K, Morawski A W. Purification of oily wastewater by hybrid UF/MD. Water Research, 35(15): 3665-3669
    8 Chang I S, Chung C M, Han S H. Treatment of oily wastewater by ultrafiltration and ozone. Desalination, 133: 225-232
    9 Zhao Y J, Tan Y, Wong F S. Formation of dynamic membrane for oily water separation by crossflow filtration. Separation and Purification Technology, 44: 212-220
    10 Koltuniewicz A B, Field R W. Process factors during removal of oil-in-water emulsions with cross-flow microfiltration. Desalination, 105: 79-89
    11 Karakulski K, Kozlowski A, Morawski A W. Purification of oily wastewater by ultrafiltration. Separations Technology, 5: 197-205
    12 徐根良.含油废水处理技术综述.水处理技术.1991,17(1):1-12
    13 宋航,Field R,Arnot T.用微滤处理乳化含油废水.水处理技术,1994,20(2):95-98
    14 王冠平,施汉昌,杨再高,许建华.超滤处理含油废水的研究.净水技术,2005,17-18
    15 王春梅,谷和平.陶瓷微滤膜处理含油废水的工艺研究.南京化工大学学报,2000,22(5):18-21
    16 王莹,袁笛.旋转管式膜器处理含油废水的研究.有色矿冶,2005,21(3):42-43
    17 杨苹,邢成国,贺高红.微滤膜过滤蛋白质溶液污染问题的研究.水处理技术,1998,24(6):324-328
    18 徐南平,时钧.无机膜的发展现状.南京化工大学学报,1998,20(4):102-106
    19 徐铜文.膜化学与技术教程.第一版.合肥:中国科学技术大学出版社,2003
    20 Benjamin M M, Chang Y. Use of iron oxides to enhance metal removal in cross flow microfiltration. Journal of Environmental Engineering, 2001, 127(5): 411-419
    21 秉直,陈艳,高乃云.混凝对膜污染的防止作用.环境科学,2005,26(1):90-93
    22 布多,张颖,顾平.氯化铁絮凝法减轻膜污染.城市环境与城市生态,2003,16(6):46-48
    23 张国俊,刘忠洲.膜过程中膜清洗技术研究进展.水处理技术,2003,29(4):187-190
    24 Taniguchi M, Kilduff J E, Belfort G. Low fouling synthetic membranes by UV-assisted graft polymerization: monomer selection to mitigate fouling by natural organic matter. Journal of Membrane Science, 2003, 222(1-2): 59-70
    25 Taniguchi, Masahide. Low protein fouling synthetic membranes by UV-assisted surface grafting modification: varying monomer type. Journal of Membrane Science, 2004, 231(1-2): 147-157
    26 Ma H, Bowman C N, Davis R H. Membrane fouling reduction by back pulsing and surface modification. Journal of Membrane Science, 2000, 173(2): 191-200
    27 Wakeman R J. Electrically enhanced microfiltration of album in suspension. Food and Bioproducts Processing: Transaction of the institution of Chemical Engineers (Part C), 1998, 76(3): 53-59
    28 Czekaj P, Mores W, Davis R H, Güell C. Infrasonic pulsing, for foulant removal in crossflow microfiltration. Journal of Membrane Science, 2000, 180(1): 157-169
    29 赵宗艾,江涛,韩颖.流体不稳定流动强化膜滤过程的研究.过滤与分离,1997,2:37-39
    30 Bauser H. Interfacial effects with microfiltration tubes. Membrane Digest, 1972, 1: 71-102
    31 Jeffree M A. Gellayer limited microfiltration rates can be increased by vortex mixing, Clin Exp Dial Apheresis, 1981, 5: 373-380
    32 Winzeler H B, Belfort G. Enhanced performance for pressure-driven membrane processes. The argument for fluid instability, Journal of Membrane Science, 1993, 80: 35-47
    33 Murase T, Iritani E, Pradistsuwana C. High-speed Microfiltration Using a Rotating Cylindrical Ceramic Membrane. International Chemical Engineer, 1991, 31(2): 370-381
    34 许莉,朱企新.陶瓷膜的应用及其动态过滤性能的研究.流体机械,1996,24(2):11-14
    35 杨柳.旋转管式膜分离器流场特征和微滤性能研究.博士学位论文,四川大学, 2000
    36 杨柳,陈文梅.旋转动态膜分离技术的研究与应用进展.流体机械,1999,27(9):29-33
    37 杨柳,赵飞虎,陈文梅.旋转聚乙烯管式膜微滤实验研究.流体机械,1999,28(6):9-13
    38 Kroner K H, Nissinen V. Dynamic filtration of microbial suspensions using an axially rotating filter. Journal of Membrane Science, 1988, 36: 85-100
    39 Margaritis A, Wilke C R. The rotor fermentor L. Description of the apparatus, power reqirments and mass transfer characteristics. Biotechnology and Bioengineer, 1978, 20: 709-715
    40 Lee S, Lueptow R M. Rotating reverse osmosis: a dynamic model for flux and rejection. Journal of Membrane Science, 2001, 192(1-2): 129-143
    41 Brou A, Ding L, Boulnois P, Jaffrin M Y. Dynamic microfiltration of yeast suspensions using rotating disks equipped with vanes. Journal of Membrane Science, 2002, 197(1-2): 269-282
    42 Murase T, Ohn T, Kimata K. Filtrate flux in crossflow microfiltration of dilute suspension forming a highly compressible fouling cake-layer. Journal of Membrane Science, 1995, 108(1-2): 121-128
    43 Mikulasek P, Dolecek P. Use of a rotating filter to enhance ceramic membrane filtration performance of latex dispersions. Separation Science and Technology, 1994, 29(15): 1943-1956
    44 王晓静,朱宏吉.旋叶动态膜分离式酶解反应器酶解糊精的实验研究.化工机械,2001,3:7-9
    45 王晓静,朱宏吉.旋叶动态膜分离式酶解反应器的多功能开发及评价.化工工程,2000,5:34-37
    46 杨柳.旋转管式膜分离器流场特征和微滤性能研究.博士学位论文,四川大学,2000
    47 杨柳,陈文梅.旋转动态膜分离技术的研究与应用进展.流体机械,1999,27(9):29-33
    48 杨柳,赵飞虎,陈文梅.旋转聚乙烯管式膜微滤实验研究.流体机械,1999,28(6):9-13
    49 褚良银,陈文梅,钟月华.旋转流强化管式膜微滤过程中分离因数研究.过滤与分离,1999,9(2):9-12
    50 褚良银,陈文梅,刘培坤,李晓钟,李建明,石岩.管式陶瓷膜十字流微滤过程 强化研究.膜科学与技术,1998,18(6):49-53
    51 Mallubhotla H, Belfort G. Flux enhancement during Dean vortex microfiltration. 8. Further diagnostics. Journal of Membrane Science, 1997, 125(1): 75-91
    52 Millward H R, Bellhouse B J, Walker G.. Screw-thread flow promoters: an experimental study of ultrafiltration and microfiltration performance. Journal of Membrane Science, 1995, 106(3): 269-279
    53 郭烈锦.两相与多相流动力学.第一版.西安:西安交大出版社,2002
    54 褚良银,陈文梅.旋转流分离理论.第一版.北京:冶金工业出版社,2002
    55 王乐夫译.Rautenbach R著.膜工艺—组件和装置设计基础.第一版.北京:化学工业出版社,1998
    56 孔祥言.高等渗流力学.第一版.合肥:中国科学技术大学出版社,1999
    57 王海芳,王连军,于文敦,李健生,孙秀云.改性聚偏氟乙烯膜的性能表征.应用基础与工程科学学报.2005,10:188-192
    58 李玉柱,苑明顺.流体力学.第二版.北京:高等教育出版社,1998
    59 Dolecek P, Mikulasek P, Belfort G. The performance of a rotating filter: 1. Theoretical analysis of the flow in an annulus with a rotating inner porous wall. Journal of Membrane Science, 1995(99): 241-248
    60 Belfort G. The behavior of suspension and macromolecule solution in cross flow microfiltration. Journal of Membrane Science, 1994(96): 1-58
    61 杨柳,陈文梅,褚良银.旋转管式膜分离器内流体的剪切力分布.膜科学与技术,2003,23(1):12-16
    62 贝歇尔 P.乳状液理论与实践.第一版.北京:科学出版社,1978.
    63 国家环境保护总局《水和废水监测分析方法》编委会.水和废水分析监测方法.北京:中国环境科学出版社,2002:489-496
    64 徐继润,罗栖.水力旋流器流场理论.第一版.北京:科学出版社,1998
    65 许振良,马炳荣.微滤技术与应用.第一版.北京:化学工业出版社,2005
    66 Fane A G. Concentration polarization and membrane fouling, causes, consequences and cures. Preprints of International Conference on Membrane Science and Technology, Beijing, China, 1998, 7: 129-130
    67 王湛.膜分离技术基础.第二版.北京:化学工业出版社,2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700