用户名: 密码: 验证码:
水凝胶的制备与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
制备了用作堵水剂、酸化转向剂的水凝胶,研究了阳离子水凝胶和聚丙烯酰胺的复合作用:
     (1)通过AM均聚、AM与AMPS共聚以及AM与DMDAAC共聚,合成了聚丙烯酰胺水凝胶、AM-AMPS水凝胶和AM-DMDAAC水凝胶。研究了引发剂、单体质量比、交联剂、填充剂等对水凝胶性能影响,得出了三种水凝胶的最佳合成条件。评价表明,AM-AMPS水凝胶的综合性能最好,而AM-DMDAAC水凝胶表现出较好的抗钙盐的能力。
     (2)基于含酯基的交联剂可在酸中水解而断开的特点,首次以AM、AMPS和PEGDA共聚,合成了能在酸中先膨胀、后溶解的可逆酸液转向剂,合成条件为:单体AM与AMPS摩尔比为1:1,单体质量分数为25%,引发剂质量分数为0.1%,交联剂质量分数为0.1%。该水凝胶转向剂在90℃15%的盐酸溶液中吸液膨胀,膨胀倍数达18倍,并可在12h内溶解,起到暂时堵塞地层的效果。
     (3)将阳离子型水凝胶溶液与HPAM复配成复合型聚合物,评价增粘、耐温、耐盐、抗剪切性。结果表明,阳离子型水凝胶溶液的加入可以提高HPAM溶液的粘度,当阳离子度为5%、两溶液质量分数相同、体积比为1:1时,其增粘效果最好,在剪切速率为170s~(-1)的条件下粘度由31.1mPa.s增加到40.5mPa.s。
Hydrogels which can be used as blocking agent and diverting agent for acidizing were prepared, and the behavior of the mixture from cationic and PAM viscosity was investigated.
     (1) By the polymerization of AM, copolymerization of AM and AMPS, copolymerization of AM and DMDAAC, the polyacrylamide hydrogels, AM-AMPS hydrogels and AM-DMDAAC hydrogels were synthesized respectively. Such factors as initiator, mass percent of monomer, crosslinker and so on were researched, and the optimum conditions to synthesize three kinds of hydrogels were obtained. Based on the performance evaluation, it is showed that AM-AMPS hydrogels was the best and the AM-DMDAAC hydrogels had good capability of calcium salt tolerance.
     (2) Considering crosslinkers with ester groups could hydrolyze and break off, a special diverting agent which could first swell and then dissolve in acid solutions, was designed by the polymerization of AM, AMPS and PEGDA. The optimum conditions to synthesize this diverting agent were as follows: the molar ratio of AM to AMPS was 1:1, the mass percent of monomer was 25%, the mass percent of initiator was 0.1%, the mass percent of cross linking agent in monomer was 0.1%. The obtained hydrogels could swell by 18 times in 15% hydrochloric acid solution when the temperature was 90℃, and after 12 hours it could dissolve. Because of this behavior, it is possible for the hydrogel to block up the layer temporarily.
     (3) The combination system was prepared by mixing cationic hydrogels and HPAM. The viscosity enhancement, temperature resistance, salt tolerance and shearing resistance of combination systems were evaluated. The result indicated that the introduction of the cationic hydrogels could enhance the viscosity of HPAM solution. When the cation degree of hydrogel was 5%, and the concentration of two solutions were correspondent, and the volume ratio was 1:1, the effect of viscosity enhancement was the best. When the rate of shearing was 170s~(-1), the viscosity could be increased from 31.1mPa.s to 40.5mPa.s.
引文
[1] 刘篙,李磊.合成高吸水聚合物的进展[J].高分子材料科学与工程,2001,17(3):11~14.
    [2] Charls M Garner, Matthew N. Sythesis of a superabsorbent polymer [J].J of Chem Edu, 1997, 74(1): 95.
    [3] 杨俊华.国内外高吸水性树脂发展概况[J].化工新型材料,1992,(2):1~9.
    [4] 邹新禧.超强吸水剂[M].北京:化学工业出版社,2002:3~20.
    [5] 陈雪萍,翁志学.高吸水性树脂的研究进展和应用[J].化工生产与技术,2000,7(1):17~19.
    [6] 高德川,邹黎明,王依民.国内外高吸水性聚合物研究开发新动向[J].化工新型材料,2000,28(8):76~84.
    [7] 程丝.高吸水性材料的复合化进展[J].合成技术及应用,2002,17(3): 26~29.
    [8] 翟茂林,哈鸿飞.水凝胶的合成、性质及应用[J].大学化学,2001,16(5):26~27.
    [9] 顾雪芹,朱育平.凝胶化学[M].北京:化学化工出版社,2005: 5~6.
    [10]G F Fanta, R C Burr, C R Russell, et al. Graft copolymers of starch. Copolymerization of gelatinized wheat starch with acrylonitrile. Formation of copolymer and effect of solvent on copolymer composition. [J] Appl.Polymer Sci. 1966, 10(5): 929~937.
    [11]L Gugliemelli, M O Weaver, C R Russell, et al. Base-hydrolyzed starch- polyacrylonitrile (S-PAN) graft copolymer. [J] Appl. Polymer Sci. 1969, 13(6): 2007~2017.
    [12]赵青春.聚合物水凝胶研究进展[J].高分子材料科学与工程,2005,21(2):28~29.
    [13]S B Vitta, E P Stahel, V T Stannet. The preparation and properties of acrylic and methacrylic grafted cellulose prepared by ceric ion initiation. Water retention properties. [J] Appl. Polymer Sci. 1986, 32(12): 5799~5810.
    [14]K S Anseth, R A Scott, N A Peppas. Effects of ionization on the reaction behavior and kinetics of acrylic acid polymerization. [J] Macromolecules, 1996, 29(26): 8308~8312.
    [15]Zuifang Liu, B W Brain. Inverse disperson polymerization of acrylic acid initiated by water-soluble redox pair: the role of drop mixing [J]. Polymer, 1999, 40: 2181~2188.
    [16]Gedye R, Smith F, Westaway K, et al. The use of microwave ovens for rapid organic synthesis [J]. Tetrahedron Lett, 1986, 27(3): 279~282.
    [17]Loretta Y, Harver W. B., John M. P. Bufer effects on aqueous swelling kinetics of polyelectrolyte gels. [J] Appl. Poly Sci, 1992, 45: 1411~1423.
    [18]Evmenenko G, Alexeev V, Budtova T, et al. Swelling- inducedstructure changes of polyelectrolyte gels. [J] Polymer, 1999, 40: 2975~2979.
    [19]Omidian H, Hashemi S A, Sammmes P G, et al. A model for the swelling of superabsorbent polymers. [J] Polymer, 1998, 39(26): 6697~6704.
    [20]Omidian H, Hashemi S A, Sammmes P G, et al. Modified acrylic-based super absorbent polymers dependence on particle size and salinity [J] Polymer, 1999, 40: 1753~1761.
    [21]刘廷栋.高吸水性树脂的吸水机理[J].高分子通报,1994,(3):181~185.
    [22]龙明策.高吸水性树脂溶胀热力学及吸水机理[J].化学通报,2002,10:705~708.
    [23]P J Flory. Principles of Polymer Chemistry[M]. Cornell University press,1954: 380~383.
    [24]李谦,李东辉,全寿益,等.用辐射技术制备丙烯酰胺与丙烯酸钠共聚物水凝胶—超级吸水材料[J].辐射研究与辐射工艺学报,1984,2(2): 12~16.
    [25]S. A. Dubrovskii, M. A. Lagutina, K. S. Kazanskii. Method of measuring the swelling pressure of superabsorbent gels[J]. Polymer Gels and Networks,1994, 2(1): 49~58.
    [26]李武宏,李弘.化学法制备高分子水凝胶的研究进展[J].离子交换与吸附,2003,19(6):567~568.
    [27]柴德民.胜利油田水膨体堵剂的研究与应用[J].油气地质与采收率,2004,11(2):73~74.
    [28]李云渤.高耐盐性预交联水膨体的合成条件优化[J].特种油气藏,2004,11(1):37~38.
    [29]张 琪.采油工程原理与设计[M].东营.石油大学出版社,2000:245~248.
    [30]陈铁龙,周晓俊,赵秀娟,等.弱凝胶在多孔介质中的微观驱替机理[J],石油学报,2005,26(5):74~77.
    [31]Zhenbin Chen, Mingzhu Liu, Songmei Ma. Synthesis and modification of salt-resistant superabsorbent polymers Reactive and Functional[J]. Polymers,2005,62(1): 85~92.
    [32]许安军,唐谋,陈艳辉.高吸水性树脂的性能及应用[J].新疆石油学院学报,2003,(6):11~14.
    [33]柳明珠,江洪申.高强度超强吸水剂研究[J].兰州大学学报(自然科学版),2002,38(2):106~110.
    [34]V.A.Kochetkov. Long-term Water Absorption and Swelling of Glass-bead Filled Plastics[J].Polym.Eng.Scl,1997, 37(6): 952~958.
    [35]Suda Kiatkamjomwong, Waranik Chomsaksakul, Manit Sonsuk. Radiation modification of water absorption of cassava starch by acrylic acid/acrylamide[J]. Radiation Physics and Chemistry, 2000, 59(4): 413~427.
    [36]陈 洪,张三辉,储玉宝,等.高温高盐油藏用疏水缔合聚合物凝胶调剖剂研究[J].油田化学,2004,21(4):58~62.
    [37]曹 亚,张 熙,李惠林,等.高分子材料在采油工程中的应用与展望[J].油田化学,2003,20(1):94~98.
    [38]张同友,赵劲毅,胡勇,等.聚合物凝胶体系性能评价方法研究[J].大庆石油地质与开发,2005,24(2):86~92.
    [39]Durmaz S, Okay O. Acrylamide/2-acrylamido-2-methylpropane sulfonic acid sodium salt-based hydrogels: synthesis and characterization[J]. Polymer,2000, 41(36): 3693~3704.
    [40]丁其杰,解孝林.耐温抗盐水膨体的研制[J].断块油气田,2003,10(1):62~64.
    [41]Fred E., Taggart, Davis L. Chemical Movement in Micellar Flooding: Determination of Sulfonates and Polymers by Liquid Chromatography Suffridge, SPE 39237, 2002.
    [42]孟建文,谭业邦.丙烯酰胺和葡萄糖烯丙基酰胺共聚水凝胶的合成与性能[J].功能高分子学报,2002,l2(1):36~41.
    [43]崔小明.AMPS及其在油田化学领域中的应用[J].四川化工,1997,(2):53~56.
    [44]洪璋传.AMPS的结构、性能及在提升腈纶品味中的作用[J].金山油化纤,2003,22(4):6~8.
    [45]张翠荣.丙烯酰胺类共聚物水凝胶的合成及性能研究[J].化学工程师,2005,116(5):9~11.
    [46]葛红江,刘希君,雷齐玲.疏水型高强度水凝胶的合成与性能[J].胶体与聚合物,2003,21(4):18~21.
    [47]Oguz Okay, Safiye B Sariisik. Swelling behavior of poly (acrylamide-co-sodium acrylate) hydrogels in aqueous salt solutions: theory versus[J].European Polymer Journal. 2000,36(8): 393~399.
    [48]张桂意,王海英,张峻,等.耐温抗盐水膨体的合成与应用[J].化工进展,2004,23(3):311~315.
    [49]项斯芬,王连波,丁鉴,等.羟基铝交联蒙脱土的红外光谱研究[J].北京大学学报(自然科学版),1989,25(2):187~193.
    [50]Flory P J.Principles of Polymer Chemistry [M].Cornell University Press ,1954,7(1): 102~109.
    [51]曾钫,童真.聚(N-异丙基丙烯酰胺)的表征及凝聚态结构[J].华南理工大学学报,1994,22(6):8~14.
    [52]王中华.AM/AMPS/AM12S共聚物的合成与性能[J].化工时刊,1999,4:27~30.
    [53]张跃军,顾学芳.二甲基二烯丙基氯化铵与丙烯酰胺共聚物的研究进展[J].精细化工,2002,19(9):521~527.
    [54]吕胜华,马建中,吕庆强,等.二甲基二烯丙基氯化铵与丙烯酰胺共聚物的结构表征与应用[J].精细化工,2000,17(7):386~388.
    [55]付继彤,彭苏萍.高含水期阳离子聚合物驱油调剖实验研究[J].石油钻探技术,2002,30(6):59~60.
    [56]朱秀林、顾梅、赵峰.高岭土-聚丙烯酸钠高吸水性复合树脂的合成及性能研究[J].高分子材料科学与工程,1994,(5):46~49.
    [57]卢其明,罗志刚,刘安勋,等.聚丙烯酰胺/膨润土复合水凝胶的结构及粘弹性[J].高分子材料科学与工程,2005,21(6):158~161.
    [58]潘雪龙,彭湘红.甲基丙烯酸与淀粉接枝共聚反映研究[J].河南化工,2000,(8):12~13.
    [59]范宏,陈卓.淀粉/DMDAAC-AM接枝共聚物的合成及表征[J].高分子材料科学与工程,2002,18(5):62~65.
    [60]Albonic P.et al. Divalent-Risistant Polymer Gel for High Temperat are Applications: Syneresis Inhibiting Additives, SPE25220,1993,48(1): 647~665.
    [61]邳艳英,梁镐,吕光明.AMPS的合成与结构分析[J].油田化学,1994,11(1):9~12.
    [62]王迎军,卢玲,郑裕东.HEMA/NVP共聚水凝胶的合成与性能卢琼[J].广东化工,2005,3(2):16~20.
    [63]Sharmar, et al. Release and deposition of clays in sandstones, SPE 13562, 1985, 15(2): 45~49.
    [64]孙民伟,张健,高彦芳,等.交联剂分子量对高吸水性树脂性能的影响[J].高分子学报,2004,8(4):595~599.
    [65]余跃惠,张小平.油井选堵酸化新技术[J].江汉石油学院学报,1996,18(1):74~80.
    [66]Strassner JE,Townsend M.A Laboratory/field study of oil-soluble resin-diverting agents in Prudhoe Bay,Alaska acidizing operations.SPE 20622. 1990, 16(3): 41~45.
    [67]赵立强,邹洪岚,黄开林.暂堵酸化工艺技术及其应用[J].天然气工业,1998,18(2):49~52.
    [68]罗向东,罗亚平.屏蔽式暂堵技术在储层保护中的应用[J].钻井液与完井液,1992,9(2):38~41.
    [69]张健,张黎明,李健,等.无机盐对水溶液中两性离子聚合物分子线团尺寸的影响[J].油田化学,1998,15(2):105~108.
    [70]淡宜,王琪.聚(丙烯酰胺-丙烯酸)/聚(丙烯酰胺-二甲基二烯丙基氯化铵)分子复合型聚合物驱油剂的增粘作用[J].高等学校化学学报,1997,18(5):818~822.
    [71]马江波,王志坚,尚晓峰,等.一种新型水溶性增粘剂的研究[J].沈阳航空工业学院学报,2000,17(4):24~26.
    [72]李蔚萍,魏平方,向兴金.新型增粘剂GFZ的性能评价[J].精细石油化工进展,2004,5(10):22~24.
    [73]王冬梅,张秋红,刘建梅,等.酸液稠化剂TP-1的合成及性能[J].石油钻采工艺,2005,27(6):64~67.
    [74]QinGong He, DaZhi Gu. Polymer Materials Used for Oilfield Exploration[M], Beijing: Petroleum Industry Press, 1990: 179.
    [75]张健,张黎明,李卓美,等.耐盐增粘剂[J].石油与天然气化工,2000,29(2):80~82.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700