用户名: 密码: 验证码:
基于光电复合缆的多参量实时监测海底基盘的探讨与实现
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The Discussion and Implementation of Multi-Parameter and Real-Time Monitoring Seabed Frame Based on Photoelectric Composite Cable
  • 作者:覃楚倩 ; 陈奇 ; 王俊珠 ; 李柯良 ; 阮海龙
  • 英文作者:QIN Chuqian;CHEN Qi;WANG Junzhu;LI Keliang;RUAN Hailong;Guangzhou Marine Geological Survey;Peneson Geological Technology (Guangzhou) Co.,Ltd.;Beijing Institute of Exploration Engineering;
  • 关键词:海洋钻探 ; 海底基盘 ; 多参量 ; 实时监测 ; 光电复合缆
  • 英文关键词:ocean drilling;;seabed frame;;multi-parameter;;real-time monitor;;photoelectric composite cable
  • 中文刊名:地质装备
  • 英文刊名:Equipment for Geotechnical Engineering
  • 机构:广州海洋地质调查局;磐索地勘科技(广州)有限公司;北京探矿工程研究所;
  • 出版日期:2019-04-25
  • 出版单位:地质装备
  • 年:2019
  • 期:02
  • 基金:国土资源部中国地质调查局项目(项目编号:GZH201200606)
  • 语种:中文;
  • 页:35-38
  • 页数:4
  • CN:11-4410/TD
  • ISSN:1009-282X
  • 分类号:P756.5
摘要
海洋钻探,尤其是水深达到一定深度的深海钻探,需要由坐落于海床面的海底基盘进行辅助。本文在调研的基础上,探讨了海底基盘的多种工作方案,并针对具体的需求,研发了一种基于光电复合缆的多参量实时监测海底基盘,并在传统的海底基盘仅提供钻杆夹持的基础上增加了可视化、井口气体监测等功能,还预留了海底弃钻剪钳和重返钻孔等功能接口。通过海上试验,研制的海底基盘从耐压、供电、通讯、图像采集等通用技术测试,到钻杆夹钳的夹持力、响应时间、井口溶解气体监测等特殊技术测试均达到了设计的技术要求。
        Ocean drilling, especially in a deep depth, usually needs to be assisted by a seabed frame when conducting the drilling survey. On the basis of preliminary research, we discuss the advantages and disadvantages of different kinds of seabed frame, and propose a kind of multi-parameter real-time monitoring seabed frame based on photoelectric composite cable according to the specific needs. Besides the traditional function of clamping drill rod, the said seabed frame has additional functions such as visualization and wellhead gas monitoring, functional interfaces for undersea drill rods cutting machine and re-entry drilling have also been reserved. By conducting the offshore test, the results showed that the new developed seabed frame has met both the universal technical requirements(such as pressure resistance, power supply, communication, image acquisition) and special technical requirements of the design(such as clamping force, responding time, and monitoring of dissolved gas at the wellhead included).
引文
[1] 阮海龙,陈云龙,赵义,等.海洋超深水地质调查钻探实践[J].地质装备,2018,19(1):3-5+10.
    [2] 唐海雄,韦红术,罗俊丰,等.新型水下钻井基盘及其安装技术[J].中国海上油气,2008,20(6):398-401.
    [3] 韩剑,刘强,李浩,等.光电复合缆应用解析[J].中国新通信,2015,17(2):78-79.
    [4] 陈雪娟,王璐,杨红刚,等.3000 m海洋水下勘察基盘研制概要与试验[J].石油矿场机械,2018,47(5):14-19.
    [5] 杨红刚,陈雪娟,刘小卫,等.水下勘察基盘用海底钳系统设计与分析[J].石油机械,2011(10):45-48.
    [6] 汪飞雪,薛雄伟,曹晓明,等.双缸液压同步控制系统建模及仿真[J].锻压技术,2018,43(9):113-118.
    [7] 闻邦椿.机械设计手册(第5版) [M].北京:机械工业出版社,2010.
    [8] 陈奇.基于光电复合缆的深海摄像系统技术方案探讨与开发[J].海洋技术,2013,32(4):89-92.
    [9] 于彦江,胡波,姚永坚,等.深海浅钻在海洋区域地质调查中的应用[J].海洋地质前沿,2013,29(11):44-48.
    [10] 朱礼平,卫亚明,冯靓,等.随钻监测技术在气体钻井中的应用[J].海洋石油,2008,(4):87-90.
    [11] 顾玉民,赵金花,高磊,等.多参量原位探测与可视化技术集成在海域天然气水合物勘查中的应用研究[J].矿床地质,2012,31(S1):423-424.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700