用户名: 密码: 验证码:
利用远震接收函数研究安徽及周边地区地壳结构和各向异性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Crustal structure and anisotropy beneath the Anhui province and its surroundings revealed by teleseismic receiver functions
  • 作者:刘云昌 ; 孙娅 ; 张俊
  • 英文作者:LIU Yun-chang;SUN Ya;ZHANG Jun;School of Geosciences and Info-Physics,Central South University;Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring (Central South University),Ministry of Education;
  • 关键词:接收函数 ; H-κ叠加 ; Ps横波分裂 ; 构造演化 ; 动力学变形
  • 英文关键词:Receiver functions;;H-κ stacking;;Ps shear-wave splitting;;Tectonic evolution;;Dynamic deformation
  • 中文刊名:地球物理学进展
  • 英文刊名:Progress in Geophysics
  • 机构:中南大学地球科学与信息物理学院;有色金属成矿预测与地质环境监测教育部重点实验室(中南大学);
  • 出版日期:2018-07-26 11:58
  • 出版单位:地球物理学进展
  • 年:2019
  • 期:02
  • 基金:国家自然科学基金(41404042);; 湖南省自然科学基金青年项目(2018JJ3643)资助
  • 语种:中文;
  • 页:32-43
  • 页数:12
  • CN:11-2982/P
  • ISSN:1004-2903
  • 分类号:P315.2
摘要
为了研究安徽及周边地区的地壳精细结构及其动力学变形机制,本文利用中国地震台网50个固定台站记录的远震波形数据,采用"水准量"反褶积法提取P波接收函数,采用H-κ叠加技术和莫霍面Ps横波分裂技术,获得了各台站下方的地壳厚度、纵横波速比和地壳各向异性信息.H-κ叠加结果显示:研究区域的地壳厚度和纵横波速比在空间分布上均存在明显的区域特征.华北地块地壳厚度较薄,平均厚度约29 km,且相对平坦,波速比较高,表明地壳中镁铁成分居多.大别造山带地壳较厚,平均为33.1 km,但波速比变化较大.造山带主体波速比约为1.75甚至更低,是长英质-中性岩石特征,与造山带中下地壳拆沉有关,而造山带北部的六安断裂带出现的高波速比与局部岩浆活动产生的基性火山岩有关.扬子地块地壳厚度介于前两者之间,平均为31.5 km,波速比局部特征明显.黄山区域波速比为1.79,反映了该区域中酸性花岗岩特征.地壳各向异性结果显示:整个研究区域的分裂时间为0.2~0.6 s.华北地块横波快波方向总体为NW-SE向,与SKS分裂方向和GPS方向一致,表明壳幔变形方向一致,再结合华北块体地壳厚度较薄和高波速比,推测华北地块在拉张应力下,上地幔物质上涌,侵蚀下地壳,导致地壳变薄和火山岩成分增多.大别造山带区域的快波方向表现为NW-SE向,这与SE向的中下地壳塑性流动或多期的拆离折返构造事件吻合.郯庐断裂带附近的快波方向为NE-SW甚至N-S向,反映了该断裂带在其东西两侧挤压作用下,近南北向拉张运动.
        In this paper, we analyzed a large amount of receiver function data recorded by 50 seismic stations of China Earthquake Administration and obtained the crustal structure and crustal anisotropy information to investigate their dynamic deformation mechanism beneath the Anhui province and its surroundings through H-κ stacking method and Moho Ps shear-wave splitting technology. The crustal thickness and V_p/V_s ratio in the study region both show distinct regional characteristics. The crustal thickness in the North China block is thinner with an average thickness of 29 km and relatively flat, while the V_p/V_s ratio is obviously high, indicating that there exists more mafic rock compositions. The moderately thick crust is observed in the Dabie Orogenic belt with a Moho depth in the range of 30.1~37.2 km, which may be related with the collision between Yangtze block and North China block, subsequently causing the exhumation and upwelling of the multi-stage metamorphic belt. The V_p/V_s ratio in most of the Orogenic belt is about 1.75 even lower, which is characterized by felsic and intermediate rock compositions may connected with the middle-lower crustal delamination, while high V_p/V_s appeared in the Liu'an falt is considered as mafic volcanic rocks caused by regional magmatism. The average crustal thickness of Yangtze block is about 31 km,while V_p/V_s shows obvious region characteristics, in particular, the higher V_p/V_s ratio about 1.79 in the Huangshan area reflects the acid-intermediate granite. We also measured the crustal anisotropy used the Moho Ps conversion wave. The results show that the splitting time of the study region varies from 0.2 s to 0.6 s. The fast wave direction in the North China block is NW-SE, which is consistent with SKS splitting direction and GPS velocity filed, suggesting a crustal-mantle consistent deformation in the North China block. Further, combined with our H-κ stacking method in this area, we deduce that the upwelling material of hot upper mantle eroded the lower crust and thinning the crust based on the tensile stress, and it also increases the composition of the volcanic rocks in the crust. We also obtained the similar NW-SE fast wave direction in the Dabie Orogenic blet. It coincides with the mid-lower crustal plastic flow and multi-stage detachment and exhumation mechanism. However, the fast polarization direction is NE-SW or even to N-S beneath the Tanlu fault zone, reflecting that the fault experienced near N-S tension movement under E-W side compression environment.
引文
Ammon C J. 1991. The isolation of receiver effects from teleseismic P waveforms[J]. Bulletin of the seismological Society of America, 81(6): 2504-2510.
    Bai Z M, Wu Q J, Xu T, et al. 2016. Basic features of crustal structure in the lower Yangtze and its neighboring area of Chinese Mainland: review of deep seismic sounding research[J]. Earthquake research in China (in Chinese), 32(2): 180-192.
    Chen Y L, Niu F L, Liu R F, et al. 2010. Crustal structure beneath China from receiver function analysis[J]. Journal of Geophysical Research: Solid Earth, 115(B3).
    Clayton R W, Wiggins R A. 1976. Source shape estimation and deconvolution of teleseismic bodywaves[J]. Geophysical Journal International, 47(1): 151-177.
    Crampin S. 1981. A review of wave motion in anisotropic and cracked elastic-media[J]. Wave Motion, 3(4): 343-391.
    Crampin S, Peacock S. 2008. A review of the current understanding of seismic shear-wave splitting in the Earth’s crust and common fallacies in interpretation[J]. Wave Motion, 45(6): 675-722.
    Gu Q P, Ding Z F, Kang Q Q, et al. 2016. Pn wave velocity and anisotropy in the middle-southern segment of the Tan-Lu fault zone and adjacent region[J]. Chinese J. Geophys (in Chinese), 59(2): 504-515, doi: 10.6038/cjg20160210.
    He C S, Dong S W, Santosh M, et al. 2013. Seismic Evidence for a Geosuture between the Yangtze and Cathaysia Blocks, South China[J]. Scientific Reports, 3(29): 2200-2220.
    He C S, Santosh M, Chen X H, et al. 2014. Continental dynamics in a multi-convergent regime: a receiver function study from the North-South-Trending Tectonic Zone of China[J]. International Geology Review, 56(5): 525-536.
    He C S, Santosh M, Dong S W. 2015. Continental dynamics of Eastern China: Insights from tectonic history and receiver function analysis[J]. Earth-Science Reviews, 145: 9-24.
    Hong D Q, Wang X Z, Li J H, et al. 2013. Crustal thickness of Anhui province from receiver function study[J]. Seismology and Geology (in Chinese), 35(4): 853-863.
    Huang F, Li S G, Dong F, et al. 2008. High-Mg adakitic rocks in the Dabie orogen, central China: Implications for foundering mechanism of lower continental crust[J]. Chemical Geology, 255(1-2): 1-13.
    Huang Z X, Su W, Peng Y J, et al. 2003. Rayleigh wave tomography of China and adjacent regions[J]. Journal of Geophysical Research: Solid Earth, 108(B2).
    Kennett B L N, Engdahl E R. 1991. Traveltimes for global earthquake location and phase identification[J]. Geophysical Journal International, 105(2): 429- 465.
    Liang X T, Mao X W, Zeng C F, et al. 2016. Gravity field characteristics and orogenic belt structure of the Qinling-Dabie orogenic belt (Hubei section)[J]. Geology in China (in Chinese), 43(2): 446- 457.
    Lin W, Jin W B, Shi Y H, et al. 2013. Multi-stage exhumation process of the UHP metamorphic rocks: Implications from the extensional structure of Tongbai-Hong’an-Dabieshan orogenic belt[J]. Chin. Sci. Bull. (in Chinese), 58(23): 2259-2265, doi: 10.1360/972013-560.
    Liu B, Zhu G, Zhai M J, et al. 2015. Features and genesis of active faults in the Anhui segment of the Tan-Lu fault zone[J]. Chinese Journal of Geology (in Chinese), 50(2): 611-630.
    Liu B J, Feng S Y, Ji J F, et al. 2015. Fine lithosphere structure beneath the middle-southern segment of the Tan-Lu fault zone[J]. Chinese J. Geophys (in Chinese), 58(5): 1610-1621, doi: 10.6038/cjg20150513.
    Liu F T, Xu F T, Liu J S, et al. 2003. The crustal velocity structure of the continental deep subduction belt: study on the eastern Dabie orogen by seismic wide-angle reflection and refraction[J]. Chinese J. Geophys (in Chinese), 46(3): 366-372, doi: 10.3321/j.issn:0001-5733.2003.03.014.
    Liu H F, Niu F L. 2012. Estimating crustal seismic anisotropy with a joint analysis of radial and transverse receiver function data[J]. Geophysical Journal International, 188(1): 144-164.
    Liu X C, Li S Z, Jang B M. 2015. Tectonic evolution of the Tongbai-Hong’an orogen in central China: From oceanic subduction/accretion to continent-continent collision[J]. Science China: Earth Sciences (in Chinese), 45(8): 1088-1108.
    McNamara D E, Owens T J, Silver P G, et al. 1994. Shear wave anisotropy beneath the Tibetan Plateau[J]. Journal of Geophysical Research: Solid Earth, 99(B7): 13655-13665.
    Meissner R, Mooney W D, Artemieva I. 2002. Seismic anisotropy and mantle creep in young orogens[J]. Geophysical Journal International, 149(1): 1-14.
    Nair S K, Gao S S, Liu K H, et al. 2006. Southern African crustal evolution and composition: Constraints from receiver function studies[J]. Journal of Geophysical Research: Solid Earth, 111(B2).
    Niu F L, Bravo T, Pavlis G, et al. 2007. Receiver function study of the crustal structure of the southeastern Caribbean plate boundary and Venezuela[J]. Journal of Geophysical Research: Solid Earth, 112(B11).
    Niu F L, Li J. 2011. Component azimuths of the CEArray stations estimated from P-wave particle motion[J]. Earthquake Science, 24(1): 3-13.
    Pan S Z, Niu F L. 2011. Large contrasts in crustal structure and composition between the Ordos plateau and the NE Tibetan plateau from receiver function analysis[J]. Earth and Planetary Science Letters, 303(3- 4): 291-298.
    Ren J Y, Tamaki K, Li S, et al. 2002. Late Mesozoic and Cenozoic rifting and its dynamic setting in Eastern China and adjacent areas[J]. Tectonophysics, 344(3- 4): 175-205.
    Savage M K. 1999. Seismic anisotropy and mantle deformation: What have we learned from shear wave splitting?[J]. Reviews of Geophysics, 37(1): 65-106.
    Shen Z K, Lü J N, Wang M, et al. 2005. Contemporary crustal deformation around the southeast borderland of the Tibetan Plateau[J]. Journal of Geophysical Research Solid Earth, 110(B11).
    Shi Y Y, Zhen S H, Yan Q, et al. 2012. SKS wave splitting in east China[J]. Earthquake (in Chinese), 32(4): 33- 43.
    Vinnik L P. 1977. Detection of waves converted from P to SV in the mantle[J]. Physics of the Earth and planetary interiors, 15(1): 39- 45.
    Vinnik L P, Makeyeva L I, Milev A, et al. 1992. Global patterns of azimuthal anisotropy and deformations in the continental mantle[J]. Geophysical Journal International, 111(3): 433- 447.
    Wan T F, Zhu H, Zhao L, et al. 1996. Formation and evolution of Tan-Lu fault zone: a review[J] . Geoscience (in Chinese), 10(2): 159-168.
    Wang C Y, Zheng J H, Hu H X, et al. 1997. The study of crustal structure beneath Dabie orogenic belt[J]. Science in China Series D: Earth Sciences (in Chinese), 27(3): 221-226.
    Wang Y G, Wang C, Hou M J, et al. 2013. The granite joints and their control over landforms in Huangshan[J]. Geology of Anhui, 23(1): 1-6.
    Wu F Y, Lin J Q, Wilde S A, et al. 2005. Nature and significance of the Early Cretaceous giant igneous event in eastern China[J]. Earth and Planetary Science Letters, 233(1-2): 103-119.
    Wu P P, Wang C Y, Ding Z F, et al. 2012. Seismic anisotropy of upper mantle beneath the Dabie-Sulu and its adjacent areas[J]. Chinese Journal of Geophysics (in Chinese), 55(8): 2539-2550, doi: 10.6038/j.issn.0001-5733.2012.08.006.
    Xiao Q B, Zhao G Z, Wang J J, et al. 2008. Study on the deep electrical structure of Su-Lu orogenic belt and its adjacent area[J]. Science in China Series D: Earth Sciences (in Chinese), 38(10): 1258-1267.
    Xiao W P, Wang L, Zhang Y, et al. 2017. Study of geotectonic characteristics in eastern Dabie orogenic belt based on anomalous variation of seismomagnetism[J]. Journal of Geodesy and Geodynamics (in Chinese), 37(8): 819-823.
    Xiong Z, Li Q H, Zhang Y S, et al. 2016. Segmentation of crustal velocity structure beneath the Shandong-Jiangsu-Anhui segment of the Tanlu fault zone and adjacent areas and its geological implications[J]. Chinese Journal of Geophys (in Chinese), 59(7): 2433-2443, doi: 10.6038/cjg20160710.
    Xu H J, Ma C Q, Song Y R, et al. 2012. Early Cretaceous intermediate-mafic dykes in the Dabie orogen, eastern China: Petrogenesis and implications for crust-mantle interaction[J]. Lithos, 154(6): 83-99.
    Xu H J, Ma C Q, Ye K. 2007. Early cretaceous granitoids and their implications for the collapse of the Dabie orogen, eastern China: SHRIMP zircon U-Pb dating and geochemistry[J]. Chemical Geology, 240(3- 4): 238-259.
    Xu J R, Zhao Z X. 2004. Regional structure characteristics of crustal root of mountain beneath the Sulu orogenic belt[J]. Acta petrologica Sinica (in Chinese), 20(1): 149-156.
    Xu P F, Liu F T, Wang Q C, et al. 2000. Seismic Tomography beneath the Dabie-Sulu collision orogen-3D velocity structures of lithosphere[J]. Chinese Journal of Geophys (in Chinese), 43(3): 377-385, doi: 10.3321/j.issn:0001-5733.2000.03.011.
    Xu Y, Wang S, Meng X C. 2016. Tomographic evidence of the Tan-Lu fault zone in the Bohai Sea of eastern China[J]. Chin. Sci. Bull (in Chinses), 61(8): 891-900, doi: 10.1360/N972015- 00828.
    Xu Y G. 2001. Thermo-tectonic destruction of the archaean lithospheric keel beneath the Sino-Korean Craton in China: Evidence, timing and mechanism[J]. Physics and Chemistry of the Earth Part A-Solid Earth and Geodesy, 26(9-10): 747-757.
    Yang Y, Wang W, Wang J F, et al. 2017. Characteristics of Regional stress field and latest crustal deformation in Middle-southern segment of Tan-Lu Fault zone[J]. China Earthquake Engineering Jounrnal, 39(supp1): 14-19, doi: 10.3969/j.issn.1000- 0844.2017.supp.014.
    Ye G F, Wei W B, Jin S, et al. 2009. Study of the electrical structure and its geological meanings of the middle part of Tancheng-Liujiang fault zone[J]. Chinese J. Geophys. (in Chinese), 52(11): 2718-2825, doi: 10.3969/j.issn.0001-5733.2009.11.016.
    Yu D J, Wang Y S, Yang B F. 2016. Geochemical features of granites from two sides of the southern segment of the Tan-Lu fault zone: Evidence for middle-lower crust flow of the Dabie orogenic belt[J]. Acta Petrologica Sinica (in Chinese), 32(4): 1001-1012.
    Yuan X C. 2007. Mushroom structure of the lithospheric mantle and its genesis at depth: revisited[J]. Geology China (in Chinese), 34(5): 737-758.
    Zandt G, Ammon C J. 1995. Continental crust composition constrained by measurements of crustal Poisson’s ratio[J]. Nature, 374(6518): 152-154.
    Zhang J D, Yang X Y, Liu C Z, et al. 2012. The fine deep structure of the northern margin of the Dabie Orogenic Belt from gravity-magnetic-electrical-seismic combination survey[J] . Chinese J. Geophys. (in Chinese), 55(7): 2292-2306, doi: 10.6038/j.issn.0001-5733.2012.07.015.
    Zhang J H, Zhao G Z, Xiao Q B, et al. 2010. Analysis of electric structure of the central Tan-Lu fault zone (Yi-Shu fault zone, 36°N) and seismogenic condition[J]. Chinese Journal of Geophys (in Chinese), 53(3): 605-611, doi: 10.3969/j. issn. 0001-5733.2010.03.014.
    Zhang Y Q, Dong S W. 2008. Mesozoic tectonic evolution history of the Tan-Lu fault zone, China: Advances and new under standing[J]. Geological Bulletin of China (in Chinese), 27(9): 1371-1390.
    Zhao Z X, Xu J R. 2009. Three-dimensional crustal velocity structure of P-wave in East China from wide-angle reflection and refraction surveys[J]. Chinese Sci. Bull. (in Chinese), 54(7): 931-937.
    Zheng X F, Yao Z X, Liang J H, Zheng J. 2010. The role played and opportunities provided by IGP DMC of China National Seismic Network in Wenchuan earthquake disaster relief and researches[J]. Bulletin of the Seismological Society of America, 100(5B): 2866-2872, doi: 10.1785/0120090257.
    Zhu G, Wang D X, Liu G S, et al. 2001. Extensional activities along the Tan-Lu fault zone and its geodynamic setting[J]. Chinese Journal of Geology (in Chinese), 36(3): 269-278.
    Zhu L P, Kanamori H. 2000. Moho depth variation in southern California from teleseismic receiver functions[J]. Journal of Geophysical Research: Solid Earth, 105(B2): 2969-2980.
    Zhu L P, Owens T J, Randall G E. 1995. Lateral variation in crustal structure of the northern Tibetan Plateau inferred from teleseismic receiver functions[J]. Bulletin of the Seismological Society of America, 85(6): 1531-1540.
    白志明, 吴庆举, 徐涛, 等. 2016. 中国大陆下扬子及邻区地壳结构基本特征:深地震测深研究综述[J]. 中国地震, 32(2): 180-192.
    顾勤平, 丁志峰, 康清清, 等. 2016. 郯庐断裂带中南段及邻区Pn波速度结构与各向异性[J]. 地球物理学报, 59(2): 504-515, doi: 10.6038/cjg20160210.
    洪德全, 王行舟, 李军辉, 等. 2013. 利用远震接收函数研究安徽地区地壳厚度[J]. 地震地质, 35(4): 853-863.
    梁学堂, 毛新武, 曾春芳, 等. 2016. 秦岭—大别造山带(湖北段)重力场特征与造山带构造[J]. 中国地质, 43(2): 446- 457.
    林伟, 冀文斌, 石永红, 等. 2013. 高压-超高压变质岩石多期构造折返:以桐柏-红安-大别造山带为例[J]. 科学通报, 58(23): 2259-2265.
    刘备, 朱光, 翟明见, 等. 2015. 郯庐断裂带安徽段活断层特征与成因[J]. 地质科学, 50(2): 611-630.
    刘保金,酆少英,姬计法,等.2015.郯庐断裂带中南段的岩石圈精细结构[J].地球物理学报,58(5):1610-1621,doi:10.6038/cjg20150513.
    刘福田, 徐佩芬, 刘劲松, 等. 2003. 大陆深俯冲带的地壳速度结构-东大别造山带深地震宽角反射/折射研究[J]. 地球物理学报,46(3):366-372,doi:10.3321/j.issn:0001-5733.2003.03.014.
    刘晓春, 李三忠, 江博明. 2015. 桐柏-红安造山带的构造演化:从大洋俯冲/增生到陆陆碰撞[J]. 中国科学: 地球科学, 45(8): 1088-1108.
    石玉燕, 郑斯华, 颜启, 等. 2012. 华东地区SKS波分裂研究[J]. 地震, 32(4): 33- 43.
    万天丰, 朱鸿, 赵磊, 等. 1996. 郯庐断裂带的形成与演化:综述[J]. 现代地质, 10(2): 159-168.
    王椿镛, 郑金涵, 胡鸿翔, 等. 1997. 大别造山带的地壳结构研究[J]. 中国科学(D辑: 地球科学), 27(3): 221-226.
    汪应庚, 汪诚, 侯明金, 等. 2013. 黄山花岗岩节理及对地貌发育的控制[J]. 安徽地质, 23(1): 1-6.
    吴萍萍, 王椿镛, 丁志锋, 等. 2012. 大别-苏鲁及邻区上地幔的各向异性[J]. 地球物理学报, 55(8): 2539-2550, doi: 10.6038/j.issn.0001-5733.2012.08.006.
    肖骑彬, 赵国泽, 王继军, 等. 2008. 苏鲁造山带及邻区深部电性结构研究[J]. 中国科学(D辑: 地球科学), 38(10): 1258-1267.
    肖伟鹏, 王雷, 张毅, 等. 2017. 基于地磁异常分析大别造山带东段构造特征[J]. 大地测量与地球动力学, 37(8): 819-823.
    熊振, 李清河, 张元生, 等. 2016. 郯庐断裂带鲁苏皖段地壳速度结构的分段特征及其地质意义[J]. 地球物理学报, 59(7): 2433-2443, doi: 10.6038/cjg20160710.
    徐纪人, 赵志新. 2004. 苏鲁造山带区域地壳山根结构特征[J]. 岩石学报, 20(1): 149-156.
    徐佩芬, 刘福田, 王清晨, 等. 2000. 大别-苏鲁碰撞造山带的地震层析成像研究-岩石圈三维速度结构[J]. 地球物理学报, 43(3): 377-385, doi: 10.3321/j.issn:0001-5733.2000.03.011.
    胥颐, 汪晟, 孟晓春. 2016. 渤海海域郯庐断裂带的地震层析成像特征[J]. 科学通报, 61(8): 891-900.
    杨云, 王维, 王俊菲, 等. 2017. 郯庐断裂带中南段应力场及变形特征[J]. 地震工程学报, 39(增刊1): 14-19, doi: 10.3969/j.issn.1000- 0844.2017.增刊.014.
    叶高峰, 魏文博, 金盛, 等. 2009. 郯庐断裂带中段电性结构及其地学意义研究[J]. 地球物理学报, 52(11): 2718-2825, doi: 10.3969/j.issn.0001-5733.2009.11.016.
    余顶杰, 王勇生, 杨秉飞, 等. 2016. 郯庐断裂带南段两侧花岗岩地球化学特征:对大别造山带中-下地壳流动的限定[J]. 岩石学报, 32(4): 1001-1012.
    袁学诚. 2007. 再论岩石圈地幔蘑菇云构造及其深部成因[J]. 中国地质, 34(5): 737-758.
    张继红, 赵国泽, 肖骑彬, 等. 2010. 郯庐断裂带中段(沂沭断裂带)电性结构研究与孕震环境[J]. 地球物理学报, 53(3): 605-611.
    张交东, 杨晓勇, 刘成斋, 等. 2012. 大别山北缘深部结构的高精度重磁电震解析[J]. 地球物理学报, 55(7): 2292-2306, doi: 10.6038/j.issn.0001-5733.2012.07.015.
    张岳桥, 董树文. 2008. 郯庐断裂带中生代构造演化史: 进展与新认识[J]. 地质通报, 27(9): 1371-1390.
    赵志新, 徐纪人. 2009. 广角反射地震探测得到的中国东部地壳三维P波速度结构[J]. 科学通报, 54(7): 931-937.
    朱光, 王道轩, 刘国生, 等. 2001. 郯庐断裂带的伸展活动及其动力学背景[J]. 地质科学, 36(3): 269-278.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700