用户名: 密码: 验证码:
覆盖层中混凝土防渗墙的三维河谷效应机制及损伤特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:3D valley effect mechanism and damage behavior of the concrete cut-off wall in overburden
  • 作者:余翔 ; 孔宪京 ; 邹德高 ; 周扬
  • 英文作者:YU Xiang;KONG Xianjing;ZOU Degao;ZHOU Yang;School of Water Conservancy Engineering ,Zhengzhou University;School of Hydraulic Engineering, Dalian University of Technology;The State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology;
  • 关键词:覆盖层 ; 混凝土防渗墙 ; 河谷效应 ; 损伤 ; 安全评价
  • 英文关键词:overburden;;concrete cut-off wall;;valley effect;;damage;;safety evaluation
  • 中文刊名:水利学报
  • 英文刊名:Journal of Hydraulic Engineering
  • 机构:郑州大学水利科学与工程学院;大连理工大学水利工程学院;大连理工大学海岸和近海工程国家重点实验室;
  • 出版日期:2019-09-15
  • 出版单位:水利学报
  • 年:2019
  • 期:09
  • 基金:国家重点研发计划(2017YFC0404905);; 国家自然科学基金项目(51809034,51779034);; 中国博士后基金(2018M631790)
  • 语种:中文;
  • 页:89-100
  • 页数:12
  • CN:11-1882/TV
  • ISSN:0559-9350
  • 分类号:TV543.8
摘要
土石坝覆盖层中混凝土防渗墙的性能对大坝设计及安全评价至关重要,由于传统数值方法局限于非线性弹性,难以开展深入研究。本文首先通过系统的三维非线性有限元数值模拟,聚焦墙体变形模式及应力分布空间特征,研究三维河谷效应机制;然后针对墙体计算应力超过材料强度的现象,开发了混凝土三维塑性损伤模型和堆石体本构模型协同分析的自适应增量迭代算法,揭示了防渗墙的损伤-应力特性;最后讨论了防渗墙性能评价分析的思路。结果表明:在墙体弯曲变形及覆盖层负摩阻力的联合作用下,防渗墙的三维河谷效应表现突出:墙体拉应力的方向偏于轴向,随弯曲变形增大逐渐向竖向偏转,且其峰值存在临界坡度和临界深度。线弹性分析便于认识防渗墙的受力-变形-应力规律,但不适用于评估复杂条件下墙体的防渗性能。损伤分析能描述混凝土的材料特性,反映墙体结构的破损特征,其损伤因子可与防渗性能建立联系,用于评价防渗墙安全更加合理和准确。
        The performance of concrete cut-off walls in overburden of earth dam foundation is crucial important to dam design and safety evaluation. However,it is difficult to carry out in-depth study because the traditional numerical methods are limited to nonlinear elasticity theory. In this paper,a systematic numerical simulation by 3 D nonlinear FEM is firstly conducted to study the three-dimensional valley effect mechanism, focusing on the deformation mode and the spatial characteristics of stress distribution in the wall.Then,a 3 D plastic-damage model for concrete and an adaptive-incremental iterative algorithm for collaborative analysis with rock-fill were developed,the damage-stress characteristics of the wall was revealed. Finally,The analysis methods for evaluating the performance of concrete cut-off walls were discussed. This research indicated that the 3 D valley effect on the wall is outstanding due to the combined effect of bending deflection of the wall and negative resistance aroused by overburden. The direction of the tensile stress is orients axially,trends to the vertical gradually with the increasing deflection. In addition,there exists critical valley slope and valley depth of tensile stress. It is good to understand the force-deformation-stress rule of the wall with elastic analysis,but has no application to evaluate the performance of the wall in complex conditions. The material behavior of concrete and the damage features can be described and captured with damage analysis. Moreover,the damage index has the ability to build connections with anti-seepage performance. It is more reasonable and accurate to evaluate the performance of cut-off walls with damage analysis.
引文
[1]中国水力发电工程学会水工及水电站建筑物专业委员会.利用覆盖层建坝的实践与发展[M].北京:中国水力水电出版社,2009.
    [2] WANG W,HOEG K. The asphalt core embankment dam:a very competitive alternative[C]//Chengdu,China:The 1st International Symposium on Rockfill Dams.
    [3]宗敦峰,刘建发,肖恩尚,等.水工建筑物防渗墙技术60年Ⅱ:创新技术和工程应用[J].水利学报,2016,47(4):483-492.
    [4] RICE D J,DUNCAN J M. Findings of case histories on the long-term performance of seepage barriers in dams[J]. Journal of Geotechnical and Geoenvironmental Engineering,2010,136(1):2-15.
    [5]孔祥生,黄扬一.西藏旁多水利枢纽坝基超深防渗墙施工技术[J].人民长江,2012,43(11):34-39.
    [6]向永忠,何开明,马家燕,等.冶勒水电站大坝深厚覆盖层防渗墙施工[J].水力发电,2005,31(10):39-41.
    [7]潘迎,何蕴龙,周小溪,等.河谷地形对深厚覆盖层中防渗墙应力变形影响分析[J].岩土力学,2013,34(7):2023-2030.
    [8]程嵩,张嘎,张建民,等.河谷地形对面板堆石坝应力位移影响的分析[J].水力发电学报,2008,27(5):53-58.
    [9]孔宪京,余翔,邹德高,等.沥青混凝土心墙坝三维有限元静动力分析[J].大连理工大学学报,2015,54(2):197-203.
    [10]朱亚林,孔宪京,邹德高,等.河谷地形对高土石坝动力反应特性影响的分析[J].岩土工程学报,2012,34(9):1590-1597.
    [11]陈慧远.土石坝坝基混凝土防渗墙的应力和变形[J].水利学报,1990(4):11-21.
    [12]朱俊高,殷宗泽.高土石坝混凝土防渗墙弹塑性应力变形分析[J].水利学报,1997(7):19-23.
    [13]介玉新,周厚德.防渗墙的弯矩计算[J].岩石力学与工程学报,2009,28(6):1213-1219.
    [14]郦能惠,米占宽,孙大伟.深厚覆盖层上面板堆石坝防渗墙应力变形性状影响因素的研究[J].岩土工程学报,2007,29(1):29-31.
    [15]丁艳辉,张其光,张丙印.高心墙堆石坝防渗墙应力变形特性有限元分析[J].水力发电学报,2013,32(3):162-167.
    [16]郦能惠,米占宽,李国英,等.冶勒水电站超深覆盖层防渗墙应力变形性状的数值分析[J].水利水运工程学报,2004(1):18-23.
    [17]温续余,徐泽平,邵宇,等.深覆盖层上面板堆石坝的防渗结构形式及其应力变形特性[J].水利学报,2007,38(2):211-216.
    [18]余翔,孔宪京,邹德高.混凝土防渗墙变形与应力分布特性[J].浙江大学学报(工学版),2017,51(9):1704-1711.
    [19]温立峰.复杂地质条件下混凝土面板堆石坝力学特性规律统计及数值模拟[D].西安:西安理工大学,2018.
    [20] DASCAL O. Structural behaviour of the Manicouagan 3 cutoff[J]. Canadian Geotechnical Journal,2011,16(1):200-221.
    [21] LEE J,FENVES G L. Plastic-damage model for cyclic loading of concrete structures[J]. Journal of Engineering Mechanics,ASCE,1998,124(8):892-900.
    [22]初伟,余梁蜀,吴利言.土石坝沥青混凝土心墙接头模型试验[J].西北水力发电,2004(1):23-26.
    [23] WILSON E L,IBRAHIMBEGOVIC A. Use of incompatible displacement modes for the calculation of element stiffnesses or stresses[J]. Finite Elements in Analysis and Design,1990,7(3):229-241.
    [24]孔宪京,邹德高.新疆下坂地水利枢纽工程拦河坝静力应力变形分析[R].大连:大连理工大学工程抗震研究所,2004.
    [25]中华人民共和国水利部. SL174—2014水利水电工程混凝土防渗墙施工技术规范[S].北京:中国水利水电出版社,2014.
    [26]李青云,程展林.三峡工程二期围堰运行后的形状分析[J].岩土工程学报,2005,27(4):410-413.
    [27] CLOUGH G W,DUNCAN J M. Finite element analysis of retaining wall behavior[J]. Journal of Soil Mechanics and Foundations Engineering,1973,97(12):1657-1672.
    [28]闫东明,林皋.三向应力状态下混凝土强度和变形特性研究[J].中国工程科学,2007,9(6):64-70.
    [29] LEE J. Theory and implementation of plastic-damage model for concrete structures under cyclic and dynamic loading[D]. Berkeley:University of California,1996.
    [30] PAN J W,ZHANG C H,WANG J T,et al. Seismic damage-cracking analysis of arch dams using different earthquake input mechanisms[J]. Science China Technological Sciences,2009,52(2):518-529.
    [31] XU B,ZOU D,KONG X,et al. Dynamic damage evaluation of the slabs of the concrete faced rockfill dam with the plastic-damage model[J]. Computers and Geotechnics,2015,65:258-265.
    [32]朱百里,沈珠江.计算土力学[M].上海:上海科学技术出版社,1990.
    [33] KUPFER H B,GEERSTLE K H. Behavior of concrete under biaxial stresses[J]. Journal of the Engineering Mechanics,1973,99(EM4):852-866.
    [34] OMIDI O,LOTFI V. Finite element analysis of concrete structures using plastic-damage model in 3-D implementation[J]. International Journal of Civil Engineering,2010,8(3):187-203.
    [35]温立峰,柴军瑞,王晓.深覆盖层上面板堆石坝应力变形特性研究[J].岩土力学,2015,36(8):2386-2394.
    [36] HOSEINI M,BINDIGANAVILE V,BANTHIA N. The effect of mechanical stress on permeability of concrete:A review[J]. Cement and Concrete Composites,2009,31(4):213-220.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700