用户名: 密码: 验证码:
铀污染土壤的植物修复技术
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Phytoremediation for soil contaminated uranium
  • 作者:王浩 ; 王艳琴
  • 英文作者:Wang Hao;Wang Yanqin;Sichuan Radiation Detection&Protection Institude of Nuclear Industry(Sichuan Nuclear Emergency Technical Support Center);
  • 关键词:放射性核素 ; ; 植物修复 ; 超积累植物
  • 英文关键词:Nuclides;;Uranium;;Phytoremediation;;Hyperaccumulator
  • 中文刊名:环境与发展
  • 英文刊名:Environment and Development
  • 机构:四川省核工业辐射测试防护院(四川省核应急技术支持中心);
  • 出版日期:2019-03-28
  • 出版单位:环境与发展
  • 年:2019
  • 期:03
  • 语种:中文;
  • 页:46-48+50
  • 页数:4
  • CN:15-1369/X
  • ISSN:2095-672X
  • 分类号:X53;X173
摘要
铀矿的采选过程中必然会产生大量的尾矿与废料,其是环境中铀污染土壤的主要来源,同时核试验与核反应堆的运行也是铀在环境中产生污染的重要途径。铀尾矿库中重金属铀在地表径流和地下径流作用下,进入尾矿库周围土壤,造成了大面积低剂量的铀污染土壤,同时重金属铀还能通过生物圈进入食物链,最终危害人体健康。因此,铀污染土壤必需尽快治理。植物修复技术由于其与传统的修复方法相比,具有成本低廉、工作量小、对环境扰动小、绿色环保等优势,因此其可作为修复铀污染土壤的一种比较合适的技术。
        Uranium mining and processing will inevitably produce large amounts of uranium tailing and waste, which is a major source of environmental uranium contaminated soil. Meanwhile, nuclear testing and nuclear reactors operating are also the important way to produce uranium contamination in the environment. The surrounding soil of uranium mill tailings impoundment can be contaminated by uranium in uranium tailing, and it is a large area of low concentration. The uranium can also enter the food chain through the biosphere, and ultimately damage to human health. Therefore, uranium contaminated soil have to remediate as soon as possible. Phytoremediation has been widely accepted compared to the conventional remediation technologies, because it is a cost-effective, minimal disruption for the environment,safe and "green" remediation method. Therefore, The method can be used for remediation of uranium contaminated soil.
引文
[1]Huang J W, Blaylock M J, Kapulnik Y, et al. Phytoremediation of uranium-contaminated soils:role of organic acids in triggering uranium hyperaccumulation in plants[J]. Environmental Science&Technology, 1998, 32(13):2004-2008.
    [2] Sheppard M I, Thibault D H. Natural uranium concentrations of native plants over a low-grade ore body[J]. Canadian Journal of Botany, 1984, 62(5):1069-1075.
    [3] Johnson R, Wai C M, Mcveety B, et al. Uranium in soil around phosphate processing plants in Pocatello, Idaho[J]. Bulletin of Environmental Contamination and Toxicology, 1980, 24(1):735-738.
    [4]MalaviyaP,SinghA.Phytoremediationstrategiesfor remediation of uranium-contaminated environments:a review[J].Critical Reviews in Environmental Science and Technology, 2012,42(24):2575-2647.
    [5] Abreu M M, Neves O, Marcelino M. Yield and uranium concentration in two lettuce(Lactuca sativa L.)varieties influenced by soil and irrigation water composition, and season growth[J]. Journal of Geochemical Exploration, 2014(142):43-48.
    [6] Soudek P, Petrová?, Bene?ováD, et al. Uranium uptake by hydroponically cultivated crop plants[J]. Journal of Environmental Radioactivity, 2011, 102(6):598-604.
    [7] Gavrilescu M, Pavel L V, Cretescu I. Characterization and remediation of soils contaminated with uranium[J]. Journal of Hazardous Materials, 2009,163(2):475-510.
    [8]CunninghamSD,BertiWR.Phytoextractionand phytostabilization:technical, economic and regulatory considerations of the soil-lead issue[J]. Phytoremediation of Contaminated Soil and Water, 2000.
    [9] Salt D E, Blaylock M, Kumar N P, et al. Phytoremediation:a novel strategy for the removal of toxic metals from the environment using plants.[J]. Bio/Technolgy, 1995(13):468-474.
    [10] Jadia C D, Fulekar M H. Phytoremediation of heavy metals:recent techniques[J]. African Journal of Biotechnology, 2009, 8(6).
    [11] Freitas E V, Nascimento C W, Souza A, et al. Citric acidassisted phytoextraction of lead:a field experiment[J]. Chemosphere,2013, 92(2):213-217.
    [12]DuquèneL,VandenhoveH,TackF,etal.Enhanced phytoextraction of uranium and selected heavy metals by Indian mustard and ryegrass using biodegradable soil amendments[J].Science of the Total Environment, 2009,407(5):1496-1505.
    [13]Stingu A, Volf I, Popa V I, et al. New approaches concerning the utilization of natural amendments in cadmium phytoremediation[J].Industrial Crops and Products, 2012,35(1):53-60.
    [14] Abhilash P C, Jamil S, Singh N. Transgenic plants for enhancedbiodegradationandphytoremediationoforganic xenobiotics[J]. Biotechnology Advances, 2009,27(4):474-488.
    [15] Seth C S, Chaturvedi P K, Misra V. The role of phytochelatins and antioxidants in tolerance to Cd accumulation in Brassica juncea L.[J]. Ecotoxicology and Environmental Safety, 2008,71(1):76-85.
    [16]MacekT,KotrbaP,SvatosA,etal.Novelrolesfor genetically modified plants in environmental protection[J]. Trends in Biotechnology, 2008, 26(3):146-152.
    [17] Gheju M, Stelescu I. Chelant-assisted phytoextraction and accumulation of Zn by Zea mays[J]. Journal of Environmental Management, 2013(128):631-636.
    [18]PivetzBE.Phytoremediationofcontaminatedsoil andgroundwaterathazardouswastesites[M].UnitedStates EnvironmentalProtectionAgency,OfficeofResearchand Development, Office of Solid Waste and Emergency Response:Superfund Technology Support Center for Ground Water, National Risk Management Research Laboratory, Subsurface Protection and Remediation Division, Robert S. Kerr Environmental Research Center,2001.
    [19] Dushenkov S. Trends in phytoremediation of radionuclides[J].Plant and Soil, 2003, 249(1):167-175.
    [20] Lorestani B, Cheraghi M, Yousefi N. The potential of phytoremediation using hyperaccumulator plants:a case study at a lead-zinc mine site[J]. International Journal of Phytoremediation,2012,14(8):786-795.
    [21]DoNascimentoCWA,AmarasiriwardenaD,XingB.Comparison of natural organic acids and synthetic chelates at enhancing phytoextraction of metals from a multi-metal contaminated soil[J]. Environmental Pollution, 2006,140(1):114-123.
    [22] Hseu Z, Jien S, Wang S, et al. Using EDDS and NTA for enhanced phytoextraction of Cd by water spinach[J]. Journal of Environmental Management, 2013(117):58-64.
    [23] Willscher S, Mirgorodsky D, Jablonski L, et al. Field scale phytoremediation experiments on a heavy metal and uranium contaminated site, and further utilization of the plant residues[J].Hydrometallurgy, 2013(131):46-53.
    [24] Jagetiya B, Sharma A. Optimization of chelators to enhance uranium uptake from tailings for phytoremediation[J]. Chemosphere,2013, 91(5):692-696.
    [25]Mihalík J, Tlusto?P, SzakováJ. Comparison of willow and sunflower for uranium phytoextraction induced by citric acid[J]. Journal of Radioanalytical and Nuclear Chemistry, 2010, 285(2):279-285.
    [26] Vandenhove H, Van Hees M. Phytoextraction for cleanup of low-level uranium contaminated soil evaluated[J]. Journal of Environmental Radioactivity, 2004,72(1):41-45.
    [27] Shahandeh H, Hossner L R. Enhancement of uranium phytoaccumulation from contaminated soils[J]. Soil Science, 2002,167(4):269-280.
    [28]刘晓娜,赵中秋,陈志霞,等.螯合剂、菌根联合植物修复重金属污染土壤研究进展[J].环境科学与技术, 2011(S2):127-133.
    [29]Chen B, Roos P, Zhu Y, et al. Arbuscular mycorrhizas contribute to phytostabilization of uranium in uranium mining tailings[J]. Journal of Environmental Radioactivity, 2008, 99(5):801-810.
    [30] Weiersbye I M, Straker C J, Przybylowicz W J. Micro-PIXE mapping of elemental distribution in arbuscular mycorrhizal roots of the grass, Cynodon dactylon, from gold and uranium mine tailings[J].Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 1999,158(1):335-343.
    [31] Rufyikiri G, Huysmans L, Wannijn J, et al. Arbuscular mycorrhizalfungicandecreasetheuptakeofuraniumby subterranean clover grown at high levels of uranium in soil[J].Environmental Pollution, 2004, 130(3):427-436.
    [32] Chen B, Roos P, Borggaard O K, et al. Mycorrhiza and root hairs in barley enhance acquisition of phosphorus and uranium from phosphate rock but mycorrhiza decreases root to shoot uranium transfer[J]. New Phytologist, 2005, 165(2):591-598.
    [33] Rufyikiri G, Thiry Y, Declerck S. Contribution of hyphae and roots to uranium uptake and translocation by arbuscular mycorrhizal carrot roots under root‐organ culture conditions[J]. New Phytologist,2003, 158(2):391-399.
    [34]陈思,安莲英.土壤放射性污染主要来源及修复方法研究进展[J].广东农业科学,2013(01):174-177.
    [35]Dushenkov S, Vasudev D, Kapulnik Y, et al. Removal of uranium from water using terrestrial plants[J]. Environmental Science&Technology,1997,31(12):3468-3474.
    [36]胡南,丁德馨,李广悦,等.五种水生植物对水中铀的去除作用[J].环境科学学报, 2012(07):1637-1645.
    [37]NegriCM,HinchmanRR,WozniakJB.Capturing a’mixed’contaminant plume:tritium phytoevaporation at Argonne National Laboratory’s area 319[R]. Argonne National Lab., IL(United States). Funding organisation:US Department of Energy(United States), 2000.
    [38] KRAMERU, COTTERHOW ELLS J D, CHARNOCK J M, et al.Free histidine as a metal chelator in plants that accumulate nickel[J].Nat 1996(379):635-638.
    [39]聂小琴,丁德馨,李广悦,等.某铀尾矿库土壤核素污染与优势植物累积特征[J].环境科学研究, 2010, 23(6):719-725.
    [40]TakedaAkira,HirofumiTsukada,YuichiTakaku,et a1.Behavior of Cs, Sr and U in soil solution at rhizosphere of Brassica rapa L.[C]//Don Nielson. The 18th Word Congress of Soil Science.Philadelphia:[s. n.],2006:135.
    [41] Shahandeh H, Hossner L R. Role of soil properties in phytoaccumulation of uranium[J].Water, Air and Soil Pollution,2002(141):165-180.
    [42]ChenBD,ZhuYG.SmithFA.Effectsofarbuscular mycorrhizal inoculation on uranium and arsenic accumulation by Chinese brake fern(Pteris vitlata L.)from a uranium mining-impacted soil[J]. Chemosphere, 2006(62):1464-1473.
    [43] Shahandeh H. Hossner L R. Enhancement of uranium phytoaccumulation from contaminated soils[J]. Soil Science, 2002,167(4):269-280.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700