用户名: 密码: 验证码:
核电厂蒸汽管道中高速运动水团冲击研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:High Velocity Water Slug Impact in Steam Pipelines of NPP
  • 作者:侯庆志 ; 李顺达 ; 林磊
  • 英文作者:HOU Qingzhi;LI Shunda;LIN Lei;Tianjin University,School of Civil Engineering;Suzhou Nuclear Power Research Institute;
  • 关键词:高速运动水团 ; 冲击 ; 蒸汽管道 ; 弯头 ; 反作用力
  • 英文关键词:High velocity water slug;;Impact;;Steam pipeline;;Elbow;;Reacting force
  • 中文刊名:核科学与工程
  • 英文刊名:Nuclear Science and Engineering
  • 机构:天津大学建筑工程学院;苏州热工研究院;
  • 出版日期:2019-02-15
  • 出版单位:核科学与工程
  • 年:2019
  • 期:01
  • 基金:国家自然科学基金(No.51478305);; 归国留学人员科研启动基金
  • 语种:中文;
  • 页:20-25
  • 页数:6
  • CN:11-1861/TL
  • ISSN:0258-0918
  • 分类号:TM623
摘要
高压蒸汽作用下,核电站管道系统中凝结产生的水团可以对系统中的非连续部位造成强烈的冲击,使之损坏或者丧失功能,从而给核电站的安全运行带来较大威胁。针对高速运动水团对管端弯头的冲击问题,考虑水团在弯头处的高维动力学特性,建立了单个水团的冲击动力学模型,分别运用欧拉方法和四阶龙格-库塔方法对模型进行了数值求解。为了验证模型的有效性,特别是弯头反作用力的计算方法,模拟了不同工况下的高速水团冲击问题,并将模拟结果与文献中的实验结果以及其他模型数值结果进行了对比。对比结果表明,不论是冲击力幅值,还是冲击压力时程曲线,本文模型所得结果都与实验结果高度吻合,并且优于已有模型结果,这也证明了所提出的弯头反作用力计算方法的合理性。另外,当时间步长较小时,数值积分算法对结果没有显著的影响。
        Under high driving pressure of gas or steam in nuclear power plants(NPP),condensed water slug in steam piping system can attain a high velocity and induce damageable dynamic forces to various obstacles, posing a potential threat to safe operation of NPP. Based on high-dimensional feature of the water slug at bend, an improved one-dimensional model for slug impact is proposed and validated against experimental and numerical results in literature.It is shown that both the amplitude of the impact and the overall pressure trend obtained using the current model have better agreements with the experiments than those given by existing models. Different time integration algorithms(Euler method and fourth-order Runge-Kuttamethod) are also tested, and it is found that when time step is small, no obvious differences can be observed.
引文
[1]Wylie,E B,and Streeter V L.Fluid Transients in Systems.Printice Hall,1993,New York.
    [2]刘叔千.管道流体瞬态--水汽锤计算原理[J].核动力工程,1989,4:55-64.
    [3]Fenton R M,Griffith P.The force at a pipe bend due to the clearing of water trapped upstream[C].Transient Thermal Hydraulics and Resulting Loads on Vessel and Piping Systems,ASME,1990,PVP190,59-67.
    [4]Neumann A,Griffith P.Forces on a pipe bend resulting from clearing a pool of liquid upstream[C].Fluid-Structure Interaction,Transient Thermal Hydraulics and Structural Mechanics,ASME,1992,PVP231,135-140.
    [5]Bozkus Z,Wiggert,D C.Liquid slug motion in a voided line[J].J.Fluids Struct.,1997,11:947-963.
    [6]Bozkus Z,Baran O U,Ger M.Experimental and numerical analysis of transient liquid slug motion in a voided line[J].J.Pressure Vessel Technol.,2004,126:241-249.
    [7]Kayhan B A,Bozkus Z.A new method for prediction of the transient force generated by a liquid slug impact on an elbow of an initially voided line[J].J.Pressure Vessel Technol.,2011,133,021701,1-9.
    [8]Yang J,Wiggert D C.Analysis of liquid slug motion in a voided line[J].J.Pressure Vessel Technol.,1998,120:74-80.
    [9]Owen I,Hussein I B.The propulsion of an isolated slug through a pipe and the forces produced as it impacts upon an orifice plate[J].Int.J.Multiphase Flow,1994,20(3):659-666.
    [10]Bozkus Z.The hydrodynamics of an individual transient liquid slug in a voided line[D].PhD Thesis,Michigan State University,East Lansing,MI,USA,1991.
    [11]Hou Q,Tijsseling A S,Bozkus Z.Dynamic force on an elbow caused by a traveling liquid slug[J].J.Pressure Vessel Technol.,2014,136,031302,1-11.
    [12]Chu S S.Separated flow in bends of arbitrary turning angles,using the hodograph method and Kirchhoff’s free streamline theory[J].J.Fluids Eng.,2003,119:438-442.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700