用户名: 密码: 验证码:
基于分区供氧与溶解氧调控的低C/N比污水短程硝化反硝化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Partial Nitrification and Denitrification of Low C/N Ratio Sewage Based on Zoning Oxygen and Dissolved Oxygen Control
  • 作者:吴春雷 ; 荣懿 ; 刘晓鹏 ; 史会欣 ; 章武首 ; 金鹏康 ; 马文伟
  • 英文作者:WU Chun-lei;RONG Yi;LIU Xiao-peng;SHI Hui-xin;ZHANG Wu-shou;JIN Peng-kang;MA Wen-wei;School of Environmental and Municipal Engineering,Xi'an University of Architecture and Technology;Xi'an Fifth Sewage Treatment Plant;Shaanxi Langzheng Environmental Protection Technology Co.,Ltd.;Shaanxi Environmental Protection Group Water Environment Co.,Ltd.;
  • 关键词:分区供氧 ; 短程硝化反硝化 ; 低碳氮比 ; 深度脱氮 ; 城市污水
  • 英文关键词:zoning oxygen;;partial nitrification and denitrification;;low C/N;;advanced nitrogen removal;;municipal sewage
  • 中文刊名:环境科学
  • 英文刊名:Environmental Science
  • 机构:西安建筑科技大学环境与市政工程学院;西安市第五污水处理厂;陕西朗正环保科技有限公司;陕西环保集团水环境有限公司;
  • 出版日期:2018-12-20 07:04
  • 出版单位:环境科学
  • 年:2019
  • 期:05
  • 基金:国家重点研发计划项目(2016YFC0400701);; 陕西省科技统筹创新工程计划项目(2016TZC-S-19-3);; 陕西省重点科技创新团队项目(2013KCT-13)
  • 语种:中文;
  • 页:314-320
  • 页数:7
  • CN:11-1895/X
  • ISSN:0250-3301
  • 分类号:X703.1
摘要
针对城镇污水中碳源不足、C/N比低导致脱氮性能不佳的问题,建立了A2/O中试装置,通过调整系统缺氧/好氧分区比例及好氧区溶解氧水平,探究亚硝氮积累率及氮类污染物去除情况.结果表明,在DO为2. 0~2. 5 mg·L~(-1)条件下,改变缺氧/好氧分区比例对系统的影响较小,难以实现短程硝化;当控制DO为0. 5~0. 8 mg·L~(-1)、V_缺∶V_好=1∶1时为系统最优工况,此时系统好氧区末端亚硝氮积累率稳定在62%以上,出水总氮降至9. 0 mg·L~(-1),能够实现深度脱氮的目标.分析硝化菌表观活性可知,最优工况下SAOR与SNOR分别(以N/VSS计)为0. 14 g·(g·d)~(-1)和0. 04 g·(g·d)~(-1),二者差值较试验其他阶段更为明显,即NOB活性受到更高程度抑制是提高亚硝氮积累率的直接原因. Illumina MiSeq测序结果表明,该阶段NOB数量显著低于其他阶段.通过间歇OUR法分析缺氧区进出口碳源组成情况,结果表明最优工况下系统通过短程硝化节约碳源27. 3%,可生化性COD在缺氧区消耗63. 6%,远高于其他阶段,是低C/N比城市污水实现深度脱氮的碳源有力保障.
        Poor nitrogen removal from municipal sewage is mainly due to insufficient carbon source and low C/N ratio. The A2/O pilot plant was established to investigate the accumulation rate of nitrous nitrogen and the removal of nitrogen pollutants by adjusting the ratio of anoxic/aerobic zoning and dissolved oxygen levels in the aerobic zone. The results showed that when DO is 2. 0-2. 5 mg·L~(-1),changing the ratio of anoxic to aerobic zoning had little effect on the reaction system,and it was difficult to realize partial nitrification.When DO is 0. 5-0. 8 mg·L~(-1),V_(Anoxic)∶ V_(Aerobic)= 1∶ 1,this is the best working condition of the system. The accumulation rate of nitrous nitrogen at the end of aerobic zone is stable at more than 62%,and the total nitrogen of effluent is reduced to 9. 0 mg·L~(-1),which can achieve the goal of deep denitrification. Analyzing the apparent activity of nitrifying bacteria,it was found that the SAOR and SNOR( according to N/VSS calculation) were 0. 14 g·( g·d)~(-1) and 0. 04 g·( g·d)~(-1),respectively,under the optimum conditions. The difference between them was more obvious than that in other stages of the experiment,that is,the higher inhibition of NOB activity was the direct reason for the increase of nitrite accumulation rate. Illumina MiSeq sequencing showed that the number of NOB in this stage was significantly lower than that in other stages. Intermittent OUR method was used to analyze the composition of carbon sources at the inlet and outlet of the anoxic zone. The results showed that short-cut nitrification and denitrification could save 27. 3% of the carbon sources under the optimal operating conditions. The biodegradable COD consumption in the anoxic zone was 63. 6%,which was much higher than that in other stages.
引文
[1]Zhou H X,Li X,Xu G R,et al.Overview of strategies for enhanced treatment of municipal/domestic wastewater at low temperature[J].Science of the Total Environment,2018,643:225-237.
    [2]Liu H B,Chen Z H,Guan Y N,et al.Role and application of iron in water treatment for nitrogen removal:A review[J].Chemosphere,2018,204:51-62.
    [3]Pelaz L,Gómez A,Letona A,et al.Nitrogen removal in domestic wastewater.Effect of nitrate recycling and COD/N ratio[J].Chemosphere,2018,212:8-14.
    [4]Chen Y Z,Li B K,Ye L,et al.The combined effects of cod/n ratio and nitrate recycling ratio on nitrogen and phosphorus removal in anaerobic/anoxic/aerobic(A2/O)-biological aerated filter(BAF)systems[J].Biochemical Engineering Journal,2015,93:235-242.
    [5]桑浪涛,石烜,张彤,等.城市污水管网中污染物冲刷与沉积规律[J].环境科学,2017,38(5):1965-1971.Sang L T,Shi X,Zhang T,et al.Law of pollutant erosion and deposition in urban sewage network[J].Environmental Science,2017,38(5):1965-1971.
    [6]Jenni S,Vlaeminck S E,Morgenroth E,et al.Successful application of nitritation/anammox to wastewater with elevated organic carbon to ammonia ratios[J].Water Research,2014,49:316-326.
    [7]Tobino T,Chen J X,Sawai O,et al.Inline thickener-MBR as a compact,energy efficient organic carbon removal and sludge production devise for municipal wastewater treatment[J].Chemical Engineering and Processing:Process Intensification,2016,107:177-184.
    [8]Ma B,Bao P,Wei Y,et al.Suppressing nitrite-oxidizing bacteria growth to achieve nitrogen removal from domestic wastewater via anammox using intermittent aeration with low dissolved oxygen[J].Science Report,2015,5:13048.
    [9]Huang X W,Urata K,Wei Q Y,et al.Fast start-up of partial nitritation as pre-treatment for anammox in membrane bioreactor[J].Biochemical Engineering Journal,2016,105:371-378.
    [10]吴鹏,张诗颖,宋吟玲,等.连续流反应器短程硝化的快速启动与维持机制[J].环境科学,2016,37(4):1472-1477.Wu P,Zhang S Y,Song Y L,et al.Quick start-up and sustaining of shortcut nitrification in continuous flow reactor[J].Environmental Science,2016,37(4):1472-1477.
    [11]马琳娜,刘文龙,张琼,等.游离亚硝酸(FNA)对A2O污泥菌群结构的影响[J].中国环境科学,2017,37(7):2566-2573.Ma L N,Liu W L,Zhang Q,et al.Effect of free nitrous acid(FNA)on microorganism community structures of A2O sludge[J].China Environmental Science,2017,37(7):2566-2573.
    [12]Miao Y Y,Peng Y Z,Zhang L,et al.Partial nitrificationanammox(PNA)treating sewage with intermittent aeration mode:Effect of influent C/N ratios[J].Chemical Engineering Journal,2018,334:664-672.
    [13]董宝刚,宋小燕,刘锐,等.间歇曝气SBR与传统SBR处理养猪沼液的比较研究[J].环境科学,2016,37(11):4309-4316.Dong B G,Song X Y,Liu R,et al.A comparative study on performance of an intermittent aeration SBR and a traditional SBRfor treatment of digested piggery wastewater[J].Environmental Science,2016,37(11):4309-4316.
    [14]刘宏,南彦斌,李慧,等.间歇曝气模式下曝气量对短程硝化恢复的影响[J].环境科学,2018,39(2):865-871.Liu H,Nan Y B,Li H,et al.Effect of aeration rate on shortcut nitrification recovery in intermittent aeration mode[J].Environmental Science,2018,39(2):865-871.
    [15]刘宏,彭永臻,卢炯元,等.间歇曝气比在短程硝化中对硝化活性的影响[J].环境污染与防治,2017,39(12):1317-1321.Liu H,Peng Y Z,Lu J Y,et al.Effect of the ratio of intermittent aeration on activity of nitrifying bacteria in shortcut nitrification[J].Environmental Pollution&Control,2017,39(12):1317-1321.
    [16]Zhang T,Wang B,Li X Y,et al.Achieving partial nitrification in a continuous post-denitrification reactor treating low C/Nsewage[J].Chemical Engineering Journal,2018,335:330-337.
    [17]朱强,刘凯,董石语,等.连续流亚硝化中试反应器的启动及其能力提升[J].环境科学,2017,38(10):4316-4323.Zhu Q,Liu K,Dong S Y,et al.Start-up and capacity enhancement of a partial nitrification pilot reactor in continuous flow[J].Environmental Science,2017,38(10):4316-4323.
    [18]吕亮,赵诗惠,韦佳敏,等.ABR-MBR工艺处理生活污水实现短程硝化[J].环境科学,2017,38(12):5154-5161.LüL,Zhao S H,Wei J M,et al.Realization of shortcut nitrification in the ABR-MBR process treating domestic wastewater[J].Environmental Science,2017,38(12):5154-5161.
    [19]Zhang Q H,Yang W N,Ngo H H,et al.Current status of urban wastewater treatment plants in China[J].Environment International,2016,92-93:11-22.
    [20]曹海彬,张代钧,卢培利.活性污泥模型进水COD组分的测定方法[J].重庆大学学报(自然科学版),2005,28(9):83-87.Cao H B,Zhang D J,Lu P L.Measurements of influent CODcomponents for activated sludge models[J].Journal of Chongqing University(Natural Science Edition),2005,28(9):83-87.
    [21]Wang Z C,Gao M C,Wei J F,et al.Long-term effects of salinity on extracellular polymeric substances,microbial activity and microbial community from biofilm and suspended sludge in an anoxic-aerobic sequencing batch biofilm reactor[J].Journal of the Taiwan Institute of Chemical Engineers,2016,68:275-280.
    [22]付国楷,周琪,杨殿海,等.倒置A2/O工艺的短程生物脱氮中试[J].中国给水排水,2006,22(17):38-41.
    [23]金鹏康,常晋,王先宝,等.不同碳源在污水处理过程中的变化规律研究[J].环境科学,2014,35(9):3443-3448.Jin P K,Chang J,Wang X B,et al.Variation of different carbon sources in the sewage treatment process[J].Environmental Science,2014,35(9):3443-3448.
    [24]Xie W M,Ni B J,Sheng G P,et al.Quantification and kinetic characterization of soluble microbial products from municipal wastewater treatment plants[J].Water Research,2016,88:703-710.
    [25]Isanta E,Reino C,Carrera J,et al.Stable partial nitritation for low-strength wastewater at low temperature in an aerobic granular reactor[J].Water Research,2015,80:149-158.
    [26]Gao F,Zhang H M,Yang F L,et al.Study of an innovative anaerobic(A)/oxic(O)/anaerobic(A)bioreactor based on denitrification-anammox technology treating low C/N municipal sewage[J].Chemical Engineering Journal,2013,232:65-73.
    [27]季民,刘灵婕,翟洪艳,等.高浓度游离氨冲击负荷对生物硝化的影响机制[J].环境科学,2017,38(1):260-268.Ji M,Liu L J,Zhai H Y,et al.Mechanism for effects of high free ammonia loadings on biological nitrification[J].Environmental Science,2017,38(1):260-268.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700