用户名: 密码: 验证码:
间作条件下超积累和非超积累植物对重金属镉的积累研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on the accumulating characteristics of heavy metal cadmium by hyperaccumulator and non-hyperaccumulator under intercropping
  • 作者:霍文敏 ; 邹茸 ; 王丽 ; 范洪黎
  • 英文作者:HUO Wen-min;ZOU Rong;WANG Li;FAN Hong-li;Institute of Agricultural Resources and Regional Planning,Chinese Academy of Agricultural Sciences/Key Laboratory of Plant Nutrition and Fertilizer,Ministry of Agriculture and Rural Affairs;China University of Geosciences (Beijing) School of Land Science And Technology;
  • 关键词:Cd ; 超积累植物 ; 非超积累植物 ; 差异性
  • 英文关键词:cadmium;;hyperaccumulator;;non-hyperaccumulator;;difference
  • 中文刊名:中国土壤与肥料
  • 英文刊名:Soil and Fertilizer Sciences in China
  • 机构:中国农业科学院农业资源与农业区划研究所/农业农村部植物营养与肥料重点开放实验室;中国地质大学(北京)土地科学技术学院;
  • 出版日期:2019-06-10
  • 出版单位:中国土壤与肥料
  • 年:2019
  • 期:03
  • 语种:中文;
  • 页:170-176
  • 页数:7
  • CN:11-5498/S
  • ISSN:1673-6257
  • 分类号:X53
摘要
通过温室盆栽试验,研究了超积累植物龙葵、非超积累植物黑麦草、苋菜分别与玉米间作条件下对重金属Cd的积累特性。结果表明,几种间作作物中地上部生物量最大的是龙葵,其次是苋菜,最小的是黑麦草,其中土壤Cd浓度为1.59 mg/kg时,龙葵地上部生物量分别是苋菜、黑麦草的2.41、10.6倍;土壤Cd浓度为1.92 mg/kg时,龙葵地上部生物量分别是苋菜、黑麦草的2.42、9.06倍,3种富集植物地上部生物量的差异达到显著水平。玉米间作条件下超积累植物龙葵各器官中Cd含量表现为叶>茎>籽粒>根,即地上部大于根部;而苋菜中Cd含量表现为根>茎>叶,黑麦草中Cd含量表现为根部>地上部,即非超积累植物Cd含量为根部大于地上部。土壤中Cd含量为1.59 mg/kg时,龙葵地上部Cd累积量分别为苋菜、黑麦草的28.0、59.9倍;龙葵的富集系数是苋菜、黑麦草的28.2、59.3倍,转运系数分别是苋菜、黑麦草的8.08、55.9倍。土壤中Cd含量为1.92 mg/kg时,龙葵地上部Cd累积量分别为苋菜、黑麦草的30.8、43.5倍;龙葵的富集系数分别是苋菜、黑麦草的29.4、41.4倍,转运系数分别是苋菜、黑麦草的7.98、53.6倍。综上可知,超积累植物龙葵对土壤中Cd的吸收与转运能力远远大于非超积累植物苋菜、黑麦草,龙葵是最理想的与玉米间作的Cd污染土壤修复的植物修复材料。
        Through pot experiment in greenhouse,the accumulation characteristics of heavy metal Cd were studied in hyperaccumulator Solanum nigrum L.,non hyperaccumulator Lolium perence L.,Amaranthus mangostanus L. under intercropping of maize. The results showed that the largest shoots biomass of several intercropping crops was the Solanum nigrum L.,followed by Amaranthus mangostanus L.,and the smallest was Lolium perenne L. The Cd content in the organs of hyperaccumulator Solanum nigrum L. was:leaf>stem>grain>root,the shoots was larger than root;while the Cd content in Amaranth mangostanus L. was:root>stem>leaf,and the Cd content in Lolium pernne L. was:root>shoots,the Cd content of non hyperaccumulator was showed as root greater than shoots. The Cd content in soil was 1.59 mg/kg,the Cd accumulation in the shoots of Solanum nigrum L. was 28.2 and 59.3 times of Amaranth mangostanus L. and Lolium perenne L.,respectively,and the transport coefficient was 8.08 and 55.9 times of Amaranth mangostanus L. and Lolium perenne L. The Cd content in soil was 1.92 mg/kg,the Cd accumulation in the shoots of Solanum nigrum L. was 30.8 and 43.5 times of Amaranth mangostanus L. and Lolium perenne L.,respectively;the enrichment coefficient of hyperaccumulator Solanum nigrum L.was 29.4 and 41.4 times of Amaranth mangostanus L. and Lolium perenne L.,and the transport coefficient was 7.98 and 53.6 times of Amaranth mangostanus L. and Lolium perenne L. Thus,Solanum nigrum L. could be the most ideal phytoremediation material which intercropping with maize in Cd contaminated soil.
引文
[1]宋伟,陈百明,刘琳.中国耕地土壤重金属污染概况[J].水土保持研究,2013,20(2):293-298.
    [2]White P J,Brown P H.Plant nutrition for sustainable development and global health[J].Annals of Botany,2010,105:1073-1080.
    [3]Choppala G,Saifullah,Bolan N,et al.Cellular mechanisms in higher plants governing tolerance to cadmium Toxicity[J].Critical Reviews in Plant Sciences,2014,33:374-391.
    [4]赵鲁,李旭军,刘安辉,等.大豆和小麦对土壤中镉的吸收与富集研究[J].中国土壤与肥料,2013,(5):66-70.
    [5]谢黎虹,许梓荣.重金属镉对动物及人类的毒性研究进展[J].浙江农业学报,2003,15(6):52-57.
    [6]李玉双,孙丽娜,孙铁珩,等.超富集植物叶用红忝菜(Beta vulgaris var.cicla L.)及其对Cd的富集特征[J].农业环境科学学报,2007,26(4):1386-1389.
    [7]刘安辉,赵鲁,李旭军,等.氮肥对镉污染土壤上小油菜生长及镉吸收的影响[J].中国土壤与肥料,2014,(2):77-81.
    [8]王学华,戴力.作物根系镉滞留作用及其生理生化机制[J].中国农业科学,2016,49(22):4323-4341.
    [9]李柱,周嘉文,吴龙华.2017年土壤重金属污染与修复研究热点[J].科技导报,2018,36(1):189-198.
    [10]魏树和,周启星,王新.超积累植物龙葵及其对镉的富集特征[J].环境科学,2005,26(3):167-171.
    [11]Wei S H,Li Y M,Zhou Q X,et al.Effect of fertilizer amendments on phytoremediation of Cd-contaminated soil by a new discovered hyperaccumulator Solanum nigrum L.[J].Journal of Hazardous Materials,2010,176:269-273.
    [12]刘俊祥,许新桥,钱永强,等.多年生黑麦草抗氧化酶和植物络合素对Cd2+胁迫的应答[J].生态学杂志,2013,32(7):1787-1793.
    [13]马博英.多年生黑麦草的逆境生理研究进展[J].生物学杂志,2010,27(2):58-61.
    [14]杨卓,王伟,李博文,等.高羊茅和黑麦草对污染土壤Cd,Pb,Zn的富集特征[J].水土保持学报,2008,22(2):83-87.
    [15]徐信阳,陈伊豪,李丽,等.黑麦草修复重金属中外源改良剂的研究进展[J].环境科技,2018,31(1):62-66.
    [16]Hao H Z,Zhong R G,Miao Y R,et al.The intercropping influence on heavy metal uptake for hyperaccumulators[C].International Conference on Biomedical Engineering and Biotechnology,2012.1826-1828.
    [17]Kroon D H,Hendriks M,Ruijven V J,et al.Root responses to nutrients and soil biota:drivers of species coexistence and ecosystem productivity[J].Journal of Ecology,2012,100(1):6-15.
    [18]秦欢,何忠俊,熊俊芬,等.间作对不同品种玉米和大叶边草吸收积累重金属的影响[J].农业环境科学学报,2013,31(7):1281-1288.
    [19]李志贤,陈章,陈国梁,等.镉富集植物油菜与玉米间作对玉米吸收积累镉的影响[J].生态学杂志,2016,35(1):26-31.
    [20]鲍士旦.农业化学分析(3版)[M].北京:中国农业出版社,2000.
    [21]Bhargava A,Carmona F F,Bhargava M,et al.Approaches for enhanced phytoextraction of heavy metals[J].Journal of Environmental Management,2012,105:103-120.
    [22]熊国焕,高建培,王宏镔,等.间作条件下螯合剂对龙葵和大叶井口边草吸收重金属的影响[J].农业环境科学学报,2011,30(4):666-676.
    [23]张杰.超积累植物东南景天Cd耐性和积累的分子机制[D].杭州:浙江大学,2015.12-15.
    [24]Lombi E,Zhao F J,Mcgrath S P,et al.Physiological evidence for a high-affinity cadmium transporter highly expressed in a Thlaspi caerulescens ecotype[J].New Phytologist,2001,27:1197-1207.
    [25]Yang X E,Li T Q,Long X X,et al.Dynamics of zinc uptake and accumulation in the hyperaccumulating and nonhyperaccumulating ecotypes of Sedum alfredii Hance[J].Plant and Soil,2006,284:109-119.
    [26]Lu L L,Tian S K,Yang X E,et al.Enhanced root-to-shoot translocation of cadmium in the hyperaccumulating ecotype of Sedum alfredii[J].Journal of Experimental Botany,2008,59:3203-3213.
    [27]黑亮,吴启堂,龙新宪,等.东南景天和玉米套种对Zn污染污泥的处理效应[J].2007,28(4):852-858.
    [28]谭建波,湛方栋,刘宁宁,等.续断菊与蚕豆间作下土壤部分化学特征与Cd形态分布状况研究[J].农业环境科学学报,2016,35(1):53-60.
    [29]王吉秀,湛方栋,李元,等.铅胁迫下小花南芥与玉米间作对根系分泌物有机酸的影响[J].中国生态农业学报,2016,3(24):365-372
    [30]Leitenmaier B,Kupper H.Compartmentation and complexation of metals in hyperaccumulator plants[J].Front Plant Sci,2013,4:374.
    [31]王京文,蔡梅,郑洁敏,等.丝瓜与伴矿景天间作对土壤Cd形态及丝瓜Cd吸收的影响[J].农业环境科学学报,2016,35(12):2292-2298.
    [32]Tian S K,Lu L L,Labacitch J,et al.Cellular sequestration of cadmium in the hyperaccumulator Plant Species Sedum alfredii[J].Plant Physiology,2011,157:1914-1925.
    [33]Liu Z F,Ge H G,Li C,et al.Enhanced phytoextraction of heavy metals from contaminated soil by plant Co-cropping associated with PGPR[J].Water Air and Soil Pollution,2015,226(3):1-10.
    [34]Fan S K,Zhu J,Tian W H,et al.Effects of split applications of nitrogen fertilizers on the Cd level and nutritional quality of Chinese cabbage[J].Journal of Zhejiang University-SCIENCE B(Biomedicine&Biotechnology),2017,18(10):897-905.
    [35]Xing J P,Jiang R F,Ueno D,et al.Variation in root-to-shoot translocation of cadmium and zinc among different accessions of the hyperaccumulators Thlaspi caerulescens and Thlaspi praecox[J].New Phytologist,2008,178:315-325.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700