用户名: 密码: 验证码:
青藏高原地区3种全球DEM精度对不同地形因子的响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Response of Three Global DEM Data Accuracy to Different Terrain Factors in Qinghai-Tibet Plateau
  • 作者:高志远 ; 谢元礼 ; 王宁练 ; 蒋广鑫 ; 周鹏
  • 英文作者:Gao Zhiyuan;Xie Yuanli;Wang Ninglian;Jiang Guangxin;Zhou Peng;College of Urban and Environmental Sciences, Northwest University;Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Northwest University;Institute of Earth Surface System and Hazards, Northwest University;
  • 关键词:ICESAT/GLAS ; 地形因子 ; DEM精度评价 ; 青藏高原
  • 英文关键词:ICESAT/GLAS;;terrain factors;;DEM accuracy evaluation;;Qinghai-Tibet Plateau
  • 中文刊名:水土保持通报
  • 英文刊名:Bulletin of Soil and Water Conservation
  • 机构:西北大学城市与环境学院;陕西省地表系统与环境承载力重点实验室;西北大学地表系统与灾害研究院;
  • 出版日期:2019-04-23 16:03
  • 出版单位:水土保持通报
  • 年:2019
  • 期:02
  • 基金:中国科学院“一带一路”科技合作专项“中国科学院国际合作局对外合作重点项目”(131C11KYSB20160061);中国科学院A类战略性先导科技专项“地球大数据科学工程”(XDA19070302)
  • 语种:中文;
  • 页:190-197
  • 页数:8
  • CN:61-1094/X
  • ISSN:1000-288X
  • 分类号:P208
摘要
[目的]探究青藏高原地区3种全球DEM精度对不同地形因子的响应,以便对全球DEM在各领域应用研究提供支撑。[方法]以青藏高原地区作为研究区,以ICESAT/GLAS的GLAH14高程数据作为高程参考数据,研究SRTM DEM,ASTER GDEM和HydroSHEDS DEM的精度对坡度、坡向以及地形粗糙度等地形因子的响应规律。[结果]总体上,SRTM DEM精度最高,HydroSHEDS DEM精度最低。不同地形因子对3种DEM精度均有不同影响。DEM误差随着坡向分布呈不同的态势。其中SRTM DEM正负测量偏离值点分别集中在南坡向和西北坡方向;ASTER GDEM正负测量偏离值点分别集中西北坡向和东南坡向;HydroSHEDS DEM正负测量偏离值点分别集中在东坡向和西南坡向。3种DEM精度与地形粗糙度均呈现较为明显的二次多项式关系。[结论]在青藏高原地区,3种DEM精度均与地形要素有着不同程度相关性,SRTM DEM精度最优且受地形要素影响程度小,HydroSHEDS DEM精度最差,受到地形要素的影响程度最大。
        [Objective] This study investigated the response of three global DEM data's accuracy to different terrain factors in the Qinghai-Tibet Plateau region in order to provide support for application and research of global DEM in various fields. [Methods] This study takes GLAH14 DEM data of ICESat/GLAS as referential data to explore the responses of accuracies of SRTM DEM, ASTER GDEM and HydroSHEDS DEM to terrain factors, e.g., slope, aspect, and terrain roughness. [Results] In general, the accuracy of STRM DEM was the highest, while that of HydroSHEDS DEM was the lowest. Different terrain factors had different effects on three DEM accuracy. Three DEM errors present several trends because of aspect distribution. Specifically, positive and negative measurement deviation values in the SRTM DEM located in southern and northwestern aspects, ASTER GDEM in northwestern and southeastern aspects, and HydroSHEDS DEM in eastern and southwestern aspects. There was obvious quadratic polynomial relationship between DEM accuracy and terrain roughness expressed as fractal dimension D. [Conclusion] In the Qinghai-Tibet Plateau region, there have different levels of correlation between DEM accuracy and terrain factors, where SRTM DEM accuracy is the highest with slight influence from terrain factors, on the contrary HydroSHEDS DEM accuracy is the lowest with intense influence from terrain factors.
引文
[1] Belz J E,Rodriguez E,Morris C S.A global assessment of the SRTM performance[J].Photogrammetric Engineering & Remote Sensing,2015,72(3):249-260.
    [2] Shortridge A,Messina J.Spatial structure and landscape associations of SRTM error[J].Remote Sensing of Environment,2011,115(6):1576-1587.
    [3] Braun A,Fotopoulos G.Assessment of SRTM,ICESat,and survey control monument elevations in Canada[J].Photogrammetric Engineering & Remote Sensing,2007,73(12):1333-1342.
    [4] Hirt C,Filmer M S,Featherstone W E.Comparison and validation of the recent freely available ASTER-GDEM ver1,SRTM ver 4.1 and GEODATA DEM-9 S ver 3 digital elevation models over Australia[J].Journal of the Geological Society of Australia,2010,57(3):337-347.
    [5] En?le F,Heinzel J,Koch B.Accuracy of vegetation height and terrain elevation derived from ICESat/GLAS in forested areas[J].International Journal of Applied Earth Observations & Geoinformation,2014,31(1):37-44.
    [6] Yue Linwei,Shen Huanfeng,Zhang,Liangpei,et al.High-quality seamless DEM generation blending SRTM-1,ASTER GDEM v2 and ICESat/GLAS observations[J].Isprs Journal of Photogrammetry & Remote Sensing,2017,123:20-34.
    [7] Liu Jun,Tong Xiaohua,Liu Shijie,et al.Glacier mass change evaluation in Lambert-Amery area from 2002 to 2012 using ASTER stereo images and ICESat GLAS laser altimetry[J].IOP Conference Series:Earth and Environmental Science,2014,17(1):1-5.
    [8] Zhang Guoqing,Xie Hongjie,Kang Shichang,et al.Monitoring lake level changes on the Tibetan Plateau using ICESat altimetry data(2003—2009)[J].Remote Sensing of Environment,2011,115(7):1733-1742.
    [9] 王雪梅,李新,马明国,等.青藏高原科研文献地理信息空间分析研究[J].地球科学进展.2012,27(11):1288-1294.
    [10] 陈博.中国冻土的时空变化特征[C]//中国气象学会.中国气象学会2006年年会“气候变化及其机理和模拟”分会场论文集.2006.
    [11] 万杰,廖静娟,许涛,等.基于ICESat/GLAS高度计数据的SRTM数据精度评估:以青藏高原地区为例[J].国土资源遥感,2015,27(1):100-105.
    [12] 陈国栋.利用ICESat数据确定北极冰雪消融方法的研究[D].湖北武汉:武汉大学,2015.
    [13] 杜小平,郭华东,范湘涛,等.基于ICESat/GLAS数据的中国典型区域SRTM与ASTER GDEM高程精度评价[J].地球科学:中国地质大学学报,2013,38(4):887-897.
    [14] Clarke K C.Computation of the fractal dimension of topographic surfaces using the triangular prism surface area method[J].Computers & Geosciences,1986,12(5):713-722.
    [15] Xie Heping,Wang Jin-an,Stein E.Direct fractal measurement and multifractal properties of fracture surfaces[J].Physics Letters A,1998,242(1/2):41-50.
    [16] 周银军,陈立,刘欣桐,等.河床表面分形特征及其分形维数计算方法[J].华东师范大学学报:自然科学版,2009,2009(3):170-178.
    [17] 周宏伟,谢和平,KWASNIEWSKIMA.粗糙表面分维计算的立方体覆盖法[J].摩擦学学报,2000,20(6):455-459.
    [18] Zhang Quan,Yang Qinke,Wang Chunmei.SRTM error distribution and its associations with landscapes across China[J].Photogrammetric Engineering & Remote Sensing,2016,82(2):135-148.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700