用户名: 密码: 验证码:
不同黄麻品种对重金属污染农田镉的富集和转移效率研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Cadmium accumulation and translocation in different jute(Corchorus capsularis L.) cultivars growing in heavy metal contaminated paddy soil
  • 作者:郭媛 ; 邱财生 ; 龙松华 ; 王玉
  • 英文作者:GUO Yuan;QIU Cai-sheng;LONG Song-hua;WANG Yu-fu;Institute of Bast Fiber Crops/Center for Southern Economic Crops, Chinese Academy of Agricultural Sciences;
  • 关键词:黄麻 ; Cd ; 富集特征 ; 植物修复
  • 英文关键词:jute(Corchorus capsularis L.);;Cd;;accumulation characteristics;;phytoremediation
  • 中文刊名:农业环境科学学报
  • 英文刊名:Journal of Agro-Environment Science
  • 机构:中国农业科学院麻类研究所/中国农业科学院南方经济作物研究中心;
  • 出版日期:2019-08-20
  • 出版单位:农业环境科学学报
  • 年:2019
  • 期:08
  • 基金:国家重点研发计划项目(2017YFD0801504);; 中国农业科学院创新工程项目(ASTIP-IBFC06);; 国家重点研发计划政府间国际科技创新合作重点专项(2017YFE9135300)~~
  • 语种:中文;
  • 页:272-278
  • 页数:7
  • CN:12-1347/S
  • ISSN:1672-2043
  • 分类号:X53;X173
摘要
为研究黄麻(Corchorus capsularis L.)植株对重金属污染农田中Cd的富集和转移效率,以湖南省株洲县为试验区,研究3个黄麻品种6个植株器官的干物质积累、Cd富集和转移特征。结果表明:木质部和韧皮部是黄麻植株干物质积累的主要器官;不同品种的黄麻及其器官间的Cd含量均呈显著差异,3个品种中连红黄麻各器官的Cd含量均高于闽侯红皮和黄麻179。6个植株器官中,蒴果和叶柄的Cd含量显著高于其他器官,平均值分别为4.75 mg·kg~(-1)和4.27 mg·kg~(-1),其他器官Cd含量均值从高到低依次为叶片>根部>木质部>韧皮部;地上部器官间Cd转移效率研究表明,3个品种地上部的Cd转移系数均在1以上。Cd从木质部和韧皮部到叶柄和蒴果的转移能力较强,从根部到木质部和韧皮部、从叶柄到叶片的转移能力较弱。对黄麻Cd总富集量评估表明,连红黄麻的总富集量最高,每公顷可富集53.3 g的Cd,木质部占总富集量的33.11%~42.99%。研究表明,黄麻对中度Cd污染农田中的Cd有较高的富集和转移能力,可作为植物修复材料加以利用。
        To investigate the Cd phytoextraction capacity of jute(Corchorus capsularis L.)planted in heavy metal contaminated paddy soil,a field experiment was conducted in a medium cadmium-contaminated paddy field in Zhuzhou County, Hunan Province, China. Biomass and Cd concentration of six plant organs in three jute cultivars were investigated and total Cd uptake was evaluated. The results showed most biomass was stored in the xylem and phloem.Cd concentration was significantly different among cultivars and among organs. Cd accumulated more in‘Lianhonghuangma'than in the other two jute cultivars. Capsule(4.75 mg·kg~(-1))and petiole(4.27 mg·kg~(-1))showed significantly higher Cd concentrations than the other four organs, which followed in the order of leaf>root>xylem>phloem. Transportation factor of the aerial part exceeded one in all the three cultivars. The ability of Cd transportation from the xylem/phloem to the capsule/petiole was higher than that from the root to the xylem/phloem and from the petiole to the leaf. Total Cd accumulation in‘Lianhonghuangma'was 53.3 g·hm~(-2), higher than that in‘Minhouhongpi'and‘Huangma 179'. Xylem was the main Cd accumulation organ which extracted 33.11%~42.99% of the total Cd absorbed by the plant. Our research indicated jute could be used as an accumulator for phytoremediation of Cd-contaminated soil in southern China.
引文
[1]尚二萍,许尔琪,张红旗,等.中国粮食主产区耕地土壤重金属时空变化与污染源分析[J].环境科学, 2018, 39(10):4670-4683.SHANG Er-ping, XU Er-qi, ZHANG Hong-qi, et al. Spatial-temporal trends and pollution source analysis for heavy metal contamination of cultivated soils in five major grain producing regions of China[J]. Environmental Science, 2018, 39(10):4670-4683.
    [2] Ali H, Khan E, Sajad M A. Phytoremediation of heavy metals:Concepts and applications[J]. Chemosphere, 2013, 91(7):869-881.
    [3]聂亚平,王晓维,万进荣,等.几种重金属(Pb、Zn、Cd、Cu)的超富集植物种类及增强植物修复措施研究进展[J].生态科学, 2016, 35(2):174-182.NIE Ya-ping, WANG Xiao-wei, WAN Jin-rong, et al. Research progress on heavy metal(Pb, Zn, Cd, Cu)hyperaccumulating plants and strengthening measures of phytoremediation[J]. Ecological Science,2016, 35(2):174-182.
    [4]刘伟,张永波,贾亚敏.重金属污染农田植物修复及强化措施研究进展[J].环境工程, 2019, 37(5):29-44.LIU Wei, ZHANG Yong-bo, JIA Ya-min. Reasearch progress of phytoremediation and strengthening measures for heavy metals contaminated farmland[J]. Environmental Engineering, 2019, 37(5):29-44.
    [5]王玉富,郭媛,汤清明,等.亚麻修复土壤重金属污染土壤的研究与应用[J].作物研究, 2015, 29(5):443-447.WANG Yu-fu, GUO Yuan, TANG Qing-ming, et al. Study progress in flax remediation of soil contaminated by heavy metal and its application prospect[J]. Crop Research, 2015, 29(5):443-447.
    [6]董袁媛,孙竹,杨洋,等.镉胁迫对黄麻光合作用及镉积累的影响[J].核农学报, 2017, 31(8):1640-1646.DONG Yuan-yuan, SUN Zhu, YANG Yang, et al. Effects of cadmium of photosynthesis and Cd accumulation of Corchorus capsularis L.[J].Journal of Nuclear Agricultural Sciences, 2017, 31(8):1640-1646.
    [7]孙竹.黄麻(Corchorus capsularis L.)对Cd的富集特征及生理响应研究[D].成都:四川农业大学, 2015.SUN Zhu. Accumulation characteristics and physiological response of cadmium in Corchorus capsularis L.[D]. Chengdu:Sichuan Agricultural University, 2015.
    [8]王玉富.黄麻、红麻在重金属污染耕地修复中的应用研究进展[J].湖南农业科学, 2015(8):49-52.WANG Yu-fu. Review of jute and kenaf application in remediation of arable lands contaminated by heavy metals[J]. Hunan Agricultural Science, 2015(8):49-52.
    [9]陶爱芬,张晓琛,祁建民.红麻综合利用研究进展与产业化前景[J].中国麻业科学, 2007, 29(1):1-5.TAO Ai-fen, ZHANG Xiao-chen, QI Jian-min. Research progress and industrialization prospect of comprehensive utilization on kenaf[J].Plant Fiber Science in China, 2007, 29(1):1-5.
    [10]李楠.长果黄麻对重金属Cr(Ⅵ)的生物吸附研究及高效专用种质筛选[D].北京:中国农业科学院, 2014.LI Nan. Study on property and germplasm screening of efficient and special for heavy metal Cr(Ⅵ)biosorption of jute(Corchorus Olitorius L.)[D]. Beijing:Chinese Academy of Agricultural Sciences, 2014.
    [11]陈军.黄麻/红麻作物对土壤重金属的吸收和积累特性研究[D].南宁:广西大学, 2013.CHEN Jun. Study on the absorption and accumulation characteristics of heavy metals by jute and kenaf[D]. Nanning:Guangxi University,2013.
    [12]夏涓文,徐小逊,卢欣,等. EGTA与有机酸联合施用对黄麻修复Cd污染土壤的影响[J].农业环境科学学报, 2019, 38(2):333-341.XIA Juan-wen, XüXiao-xun, LU Xin, et al. Effect of combined application of EGTA and organic acid on remediation of Cd-contaminated soil by Corchorus capsularis L.[J]. Journal of Agro-Environment Science, 2019, 38(2):333-341.
    [13]中华人民共和国生态环境部.土壤环境质量农用地土壤污染风险管控标准(试行)GB 15618—2018[S].北京:中国环境科学出版社, 2018.Ministry of Ecology and Environment of PRC. Soil environmental quality Risk control standard for soil contamination of agricultural land GB 15618—2018[S]. Beijing:China Environmental Science Press, 2018.
    [14]鲍士旦.土壤农化分析[M].北京:中国农业出版社, 1999.BAO Shi-dan. Soil and agricultural chemistry analysis[M]. Beijing:China Agriculture Press, 1999.
    [15]陈军,莫良玉,阮莉,等.不同黄、红麻对土壤重金属的积累和分布特性研究[J].广东农业科学, 2012, 39(10):25-28.CHEN Jun, MO Liang-yu, RUAN Li, et al. Study on the absorption and accumulation characteristics of heavy metals by different hemp and jute[J]. Guangdong Agricultural Sciences, 2012, 39(10):25-28.
    [16] Sumiahadi A, Acar R. A review of phytoremediation technology:Heavy metals uptake by plants[C]. IOP Conference Series:Earth and Environmental Science, 2018.
    [17] Page V, Feller U. Heavy metals in crop plants:Transport and redistribution processes on the whole plant level[J]. Agronomy, 2015, 5(3):447-463.
    [18] Satoru I, Yasuhiro I, Masato I, et al. Ion-beam irradiation, gene identification, and marker-assisted breeding in the development of lowcadmium rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(47):19166-19171.
    [19]杨煜曦,卢欢亮,战树顺,等.利用红麻复垦多金属污染酸化土壤[J].应用生态学报, 2013, 24(3):832-838.YANG Yu-xi, LU Huan-liang, ZHAN Shu-shun, et al. Using kenaf(Hibiscus cannabinus)to reclaim multi-metal contaminated acidic soil[J]. Chinese Journal of Applied Ecology, 2013, 24(3):832-838.
    [20]陈燕玫,柏珺,杨煜曦,等.植物根际促生菌辅助红麻修复铅污染土壤[J].农业环境科学学报, 2013, 32(11):2159-2167.CHEN Yan-mei, BAI Jun, YANG Yu-xi, et al. Phytoremediation of Pb polluted soil by kenaf with assistance of plant growth promoting rhizobectrium(PGPR)[J]. Journal of Agro-Environment Science, 2013,32(11):2159-2167.
    [21] Angelova V, Ivanova R, Delibaltova V, et al. Bio-accumulation and distribution of heavy metals in fiber crops(flax, cotton and hemp)[J].Industrial Crops and Products, 2004, 19(3):197-205.
    [22] BjelkováM, Gen?urováV, Griga M. Accumulation of cadmium by flax and linseed cultivars in field-simulated conditions:A potential for phytoremediation of Cd-contaminated soils[J]. Industrial Crops and Products, 2011, 33(3):761-774.
    [23] Griga M, BjelkováM. Flax(Linum usitatissimum L.)and hemp(Cannabis sativa L.)as fiber crops for phytoextraction of heavy metals:Biological, agro-technological and economical point of view[M]//Plantbased Remediation Processes. Berlin:Springer Berlin Heidelberg,2013:201-203.
    [24]朱凰榕,周良华,阳峰,等.两种景天修复Cd/Zn污染土壤效果的比较[J].生态环境学报, 2019, 28(2):403-410.ZHU Huang-rong, ZHOU Liang-hua, YANG Feng, et al. Phytoremediation effects and contrast of Sedum alfredii and Sedum plumbizincicola on Cd/Zn contaminated soil[J]. Ecology and Environmental Sciences, 2019, 28(2):403-410.
    [25]宋波,张云霞,田美玲,等.应用籽粒苋修复镉污染农田土壤的潜力[J].环境工程学报, 2019, 13(7):1711-1719.SONG Bo, ZHANG Yun-xia, TIAN Mei-ling, et al. Potential for cadmium contaminated farmland remediation with Amaranthus hypochondriacus L.[J]. Chinese Journal of Environmental Engineering, 2019, 13(7):1711-1719.
    [26] McBride M B, Zhou Y. Cadmium and zinc bioaccumulation by Phytolacca americana from hydroponic media and contaminated soils[J]. International Journal of Phytoremediation, doi:10. 1080/15226514.2019. 1612849.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700