用户名: 密码: 验证码:
硬化地表对不同树种土壤微生物群落结构和功能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of land pavement on the structure and function of soil microbial community under different tree species
  • 作者:于伟伟 ; 陈媛媛 ; 汪旭明 ; 王效科
  • 英文作者:YU Weiwei;CHEN Yuanyuan;WANG Xuming;WANG Xiaoke;State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences;University of Chinese Academy of Sciences;Beijing Urban Ecosystem Research Station;
  • 关键词:硬化地表 ; 土壤微生物群落 ; 油松 ; 白蜡
  • 英文关键词:pavement;;soil microbial community;;Pinus tabulaeformis;;Fraxinus chinensis
  • 中文刊名:生态学报
  • 英文刊名:Acta Ecologica Sinica
  • 机构:中国科学院生态环境研究中心城市与区域生态国家重点实验室;中国科学院大学;北京城市生态系统研究站;
  • 出版日期:2019-03-08 16:15
  • 出版单位:生态学报
  • 年:2019
  • 期:10
  • 基金:国家自然科学基金项目(41571035,71533005);; 国家重点研发计划(2016YFC0503004)
  • 语种:中文;
  • 页:179-189
  • 页数:11
  • CN:11-2031/Q
  • ISSN:1000-0933
  • 分类号:S714.3
摘要
城市硬化地表可减少土壤有机物输入,并改变土壤理化性质,由此可能影响土壤微生物群落结构和功能,但目前国内外相关研究较少。为研究不同树种下土壤微生物群落对硬化地表的响应,设置透水硬化地表(Pervious pavement, P)、不透水硬化地表(Impervious pavement, IP)和自然地表(Control, C)3个处理水平的地表类型,并栽种北方常见的常绿针叶树油松(pine,Pinus tabulaeformis)和落叶阔叶树白蜡(ash,Fraxinus chinensis)。采用氯仿熏蒸浸提法、磷脂脂肪酸法(PLFA)及BIOLOG培养法分别测定了土壤微生物量、群落结构和功能多样性。结果表明:(1)与自然地表(C)相比,硬化地表下土壤微生物生物量碳、氮含量显著降低(P<0.05),土壤微生物群落组成和群落功能多样性发生了改变。透水和不透水硬化地表下土壤微生物细菌、真菌数量降低,真菌/细菌(fungi/bacteria, F/B)、cy/pre(环丙基脂肪酸/前体结构cyclopropyl fatty acid/monoenoic precursors)和sat/mono(一般饱和脂肪酸/单不饱和脂肪酸normal saturated fatty acid/monounsaturated fatty acid)等环境压力指标均显著升高(P<0.05),且土壤微生物cy/pre值在不透水硬化地表下显著高于透水硬化地表下,表明不透水硬化地表下土壤环境压力更大;不透水硬化地表下土壤微生物对糖类、氨基酸类、羧酸类、胺类和聚合物的利用显著降低(P<0.05),微生物群落功能丰富度及多样性指数显著降低(P<0.05)。(2)土壤微生物群落结构和功能多样性在不同树种间存在一定差异。油松树下土壤微生物真菌、丛枝菌根真菌(arbuscular mycorrhizal fungi, AMF)和F/B值在透水和不透水硬化地表下均显著降低(P<0.05),而白蜡树下只在透水硬化地表下显著降低(P<0.05);硬化地表使土壤微生物对糖类、氨基酸类和聚合物的利用强度在油松和白蜡树下表现出显著差异。硬化地表对土壤微生物的影响将进一步影响城市绿地的养分循环、树木生境和生态系统服务功能。
        Land pavement is popular during urbanization. It provides convenience to the daily life of citizens and urban development. However, it can inhibit urban plant growth by altering soil nutrients and microbial communities. Plants can purify the air as pollutants movers and alleviate the heat island effect by offering shade. Thus, it is vital to provide favorable growth conditions for plants. Consequently, it is very important to determine how land pavement affects soil microbial community structure and function as related to plant growth. In the current study, pervious(P) and impervious(IP) pavement were studied in reference to the natural surface(control, C) to determine the response of soil microorganisms under different types of pavement with pine(Pinus tabulaeformis) and ash(Fraxinus chinensis). Topsoil(0—20 cm depth) was analyzed by the well-developed methods of Biolog Ecoplate(BIOLOG) and phospholipid fatty acid(PLFA) profiles for microbial functional and structural diversity. Microbial biomass carbon(C_(mic)) and nitrogen(N_(mic)) were also examined. The results showed the following.(1) Compared to C, P and IP treatments decreased soil C_(mic) and N_(mic) and significantly changed soil microbial carbon source utilization patterns and soil microbial community structure by increasing F/B(fungi/bacteria), cy/pre(cyclopropyl fatty acid/monoenoic precursors), and sat/mono(normal saturated fatty acid/monounsaturated fatty acid). It is interesting that unlike fungi/bacteria and sat/mono, cy/pre under the IP treatment was significantly higher than that from the P treatment, with more stress in the former than the later. Moreover, IP treatment reduced soil microbial utilization of carbohydrates, amino acids, carboxylic acids, amines, and polymers. IP treatment also significantly decreased microbial community richness and diversity index by 27% and 10% for pine, and 70% and 37% for ash, respectively.(2) The effects of land pavement on soil microbial community structure and functional diversity differed with tree species. For pine, soil microbial fungi, arbuscular mycorrhizal fungi(AMF) and F/B were significantly reduced under P(40%) and IP(39%), whereas for ash they were significantly decreased by 38% only under P. Additionally, there were differences in the effects of land pavement on carbohydrates, amino acids, and polymers of soil microorganisms between pine and ash species. Pavement effects on soil microorganisms adversely affect nutrient cycling, tree habitat, and ecosystem service of urban green space at a large scale, and the present study provides some advice to the decision-makers during urban greening and development.
引文
[1] Lahariya C.The state of the world population 2007:unleashing the potential of urban growth.Indian Pediatrics,2008,45(6):481- 482.
    [2] Lehmann A,Stahr K.Nature and significance of anthropogenic urban soils.Journal of Soils and Sediments,2007,7(4):247- 260.
    [3] Yan Y,Kuang W H,Zhang C,Chen C B.Impacts of impervious surface expansion on soil organic carbon-a spatially explicit study.Scientific Reports,2015,5:17905.
    [4] European Environment Agency.Urban Sprawl in Europe - The Ignored Challenge.Copenhagen:European Environment Agency,2006.
    [5] Lee J G,Heaney J P.Estimation of urban imperviousness and its impacts on storm water systems.Journal of Water Resources Planning and Management,2003,129(5):419- 426.
    [6] Asaeda T,Ca V T,Wake A.Heat storage of pavement and its effect on the lower atmosphere.Atmospheric Environment,1996,30(3):413- 427.
    [7] Viswanathan B.Effect of Pervious and Impervious Pavement on the Rhizosphere of American Sweetgum (Liquidambar styraciflua)[D].Texas:Texas A & M University,2010.
    [8] Feng G,Wu L,Letey J.Evaluating aeration criteria by simultaneous measurement of oxygen diffusion rate and soil-water regime.Soil Science,2002,167(8):495- 503.
    [9] De Ridder K,Adamec V,Baňuelos A,Bruse M,Bürger M,Damsgaard O,Dufek J,Hirsch J,Lefebre F,Pérez-Lacorzana J M,Thierry A,Weber C.An integrated methodology to assess the benefits of urban green space.Science of the Total Environment,2004,334- 335:489- 497.
    [10] Volder A,Viswanathan B,Watson W T.Pervious and impervious pavement reduce production and decrease lifespan of fine roots of mature Sweetgum trees.Urban Ecosystems,2014,17(2):445- 453.
    [11] Grabosky J,Bassuk N,Irwin L,Van Es H.Shoot and root growth of three tree species in sidewalks.Journal of Environmental Horticulture,2001,19(4):206- 211.
    [12] Morgenroth J,Visser R.Aboveground growth response of platanus orientalis to porous pavements.Arboriculture & Urban Forestry,2011,37(1):1- 5.
    [13] Morgenroth J.Root growth response of platanus orientalis to porous pavements.Arboriculture & Urban Forestry,2011,37(2):45- 50.
    [14] Volder A,Watson T,Viswanathan B.Potential use of pervious concrete for maintaining existing mature trees during and after urban development.Urban Forestry & Urban Greening,2009,8(4):249- 256.
    [15] Montague T,Kjelgren R.Energy balance of six common landscape surfaces and the influence of surface properties on gas exchange of four containerized tree species.Scientia Horticulturae,2004,100(1/4):229- 249.
    [16] Philip E,Azlin Y N.Measurement of soil compaction tolerance of Lagestromia speciosa (L.) Pers.using chlorophyll fluorescence.Urban Forestry & Urban Greening,2005,3(3/4):203- 208.
    [17] Zhao D,Li F,Wang R S,Yang Q R,Ni H S.Effect of soil sealing on the microbial biomass,N transformation and related enzyme activities at various depths of soils in urban area of Beijing,China.Journal of Soils and Sediments,2012,12(4):519- 530.
    [18] Morgenroth J,Buchan G,Scharenbroch B C.Belowground effects of porous pavements—soil moisture and chemical properties.Ecological Engineering,2013,51:221- 228.
    [19] Chen Y Y,Wang X K,Jiang B,Yang N,Li L.Pavement induced soil warming accelerates leaf budburst of ash trees.Urban Forestry & Urban Greening,2016,16:36- 42.
    [20] Seto K C,Güneralp B,Hutyra L R.Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools.Proceedings of the National Academy of Sciences of the United States of America,2012,109(40):16083- 16088.
    [21] Wei Z Q,Wu S H,Zhou S L,Lin C.Installation of impervious surface in urban areas affects microbial biomass,activity (potential C mineralisation),and functional diversity of the fine earth.Soil Research,2013,51(1):59- 67.
    [22] Piotrowska-D?ugosz A,Charzyński P.The impact of the soil sealing degree on microbial biomass,enzymatic activity,and physicochemical properties in the Ekranic Technosols of Toruń (Poland).Journal of Soils and Sediments,2014,15(1):47- 59.
    [23] Francini G,Hui N,Jumpponen A,Kotze D J,Romantschuk M,Allen J A,Set?l? H.Soil biota in boreal urban greenspace:Responses to plant type and age.Soil Biology and Biochemistry,2018,118:145- 155.
    [24] Zelles L.Phospholipid fatty acid profiles in selected members of soil microbial communities.Chemosphere,1997,35(1/2):275- 294.
    [25] Zelles L.Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil:a review.Biology and Fertility of Soils,1999,29(2):111- 129.
    [26] Buyer J S,Drinkwater L E.Comparison of substrate utilization assay and fatty acid analysis of soil microbial communities.Journal of Microbiological Methods,1997,30(1):3- 11.
    [27] 鲁如坤.土壤农业化学分析方法.北京:中国农业科技出版社,2000.
    [28] 吴金水,林启美,黄巧云,肖和艾.土壤微生物生物量测定方法及其应用.北京:气象出版社,2006.
    [29] Bligh E G,Dyer W J.A rapid method of total lipid extraction and purification.Canadian Journal of Biochemistry and Physiology,1959,37(8):911- 917.
    [30] Bossio D A,Scow K M.Impacts of carbon and flooding on soil microbial communities:phospholipid fatty acid profiles and substrate utilization patterns.Microbial Ecology,1998,35(3/4):265- 278.
    [31] Frosteg?rd A,B??th E.The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil.Biology and Fertility of Soils,1996,22(1/2):59- 65.
    [32] Dickens S J M,Allen E B,Santiago L S,Crowley D.Exotic annuals reduce soil heterogeneity in coastal sage scrub soil chemical and biological characteristics.Soil Biology and Biochemistry,2013,58(2):70- 81.
    [33] Potthoff M,Steenwerth K L,Jackson L E,Drenovsky R E,Scow K M,Joergensen R G.Soil microbial community composition as affected by restoration practices in California grassland.Soil Biology and Biochemistry,2006,38(7):1851- 1860.
    [34] Olsson P A.Signature fatty acids provide tools for determination of the distribution and interactions of mycorrhizal fungi in soil.Fems Microbiology Ecology,1999,29(4):303- 310.
    [35] Wu Y P,Ma B,Zhou L,Wang H Z,Xu J M,Kemmitt S,Brookes P C.Changes in the soil microbial community structure with latitude in eastern China,based on phospholipid fatty acid analysis.Applied Soil Ecology,2009,43(2/3):234- 240.
    [36] Diedhiou S,Dossa E L,Badiane A N,Diedhiou I,Sène M,Dick R P.Decomposition and spatial microbial heterogeneity associated with native shrubs in soils of agroecosystems in semi-arid Senegal.Pedobiologia,2009,52(4):273- 286.
    [37] De Vries F T,Bardgett R D.Plant-microbial linkages and ecosystem nitrogen retention:lessons for sustainable agriculture.Frontiers in Ecology and the Environment,2012,10(8):425- 432.
    [38] Bean E Z,Hunt W F,Bidelspach D A.Evaluation of four permeable pavement sites in eastern North Carolina for runoff reduction and water quality impacts.Journal of Irrigation and Drainage Engineering,2007,133(6):583- 592.
    [39] Moore-Kucera J,Dick R P.PLFA profiling of microbial community structure and seasonal shifts in soils of a Douglas-fir chronosequence.Microbial Ecology,2008,55(3):500- 511.
    [40] Kieft T L,Ringelberg D B,White D C.Changes in ester-linked phospholipid fatty acid profiles of subsurface bacteria during starvation and desiccation in a porous medium.Applied and Environmental Microbiology,1994,60(9):3292- 3299.
    [41] Polyakova O,Billor N.Impact of deciduous tree species on litterfall quality,decomposition rates and nutrient circulation in pine stands.Forest Ecology and Management,2007,253(1/3):11- 18.
    [42] Wardle D A,Bardgett R D,Klironomos J N,Set?l? H,Van Der Putten W H,Wall D H.Ecological linkages between aboveground and belowground biota.Science,2004,304(5677):1629- 1633.
    [43] Xu H J,Li S,Su J Q,Nie S A,Gibson V,Li H,Zhu Y G.Does urbanization shape bacterial community composition in urban park soils?A case study in 16 representative Chinese cities based on the pyrosequencing method.Fems Microbiology Ecology,2014,87(1):182- 192.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700