用户名: 密码: 验证码:
可用于二氧化碳捕获过程的微生物碳酸酐酶的挖掘与改造
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Mining and engineering of microbial carbonic anhydrases for biomimetic carbon dioxide sequestration
  • 作者:蔡丽希 ; 楚云猛 ; 张光亚
  • 英文作者:Lixi Cai;Yunmeng Chu;Guangya Zhang;Department of Bioengineering and Biotechnology,College of Chemical Engineering,Huaqiao University;
  • 关键词:碳酸酐酶 ; 极端微生物 ; 生物矿化 ; 嗜热耐碱酶 ; 酶固定化
  • 英文关键词:carbonic anhydrase;;polyextremophilic microbes;;biomineralization;;thermo-alkali-enzyme;;enzyme immobilization
  • 中文刊名:生物工程学报
  • 英文刊名:Chinese Journal of Biotechnology
  • 机构:华侨大学化工学院生物工程与技术系;
  • 出版日期:2018-09-30 08:41
  • 出版单位:生物工程学报
  • 年:2019
  • 期:01
  • 基金:国家自然科学基金(No.21376103);; 福建省自然科学基金(No.2017J01065)资助~~
  • 语种:中文;
  • 页:8-19
  • 页数:12
  • CN:11-1998/Q
  • ISSN:1000-3061
  • 分类号:Q936
摘要
二氧化碳排放量的急剧上升引起全球温室效应加剧。碳酸酐酶是地球上反应速率最快的几种酶之一,可以大幅提高CO_2捕获和生物矿化的效率,从而降低大气中CO_2的排放量。但捕获过程在高温条件,而CO_2生物矿化形成CaCO_3的过程则需要碱性条件。因此,迫切需要筛选出既嗜热又耐碱的碳酸酐酶以用于CO_2捕获,极端微生物是这类酶的重要来源之一。文中系统、深入地介绍了目前从极端微生物或利用蛋白质工程技术获取嗜热、耐碱的碳酸酐酶的最新研究进展,同时简要介绍了一些新型固定化碳酸酐酶的方法。最后指出当前研究的重点应致力于拓宽寻找碳酸酐酶的范围,改良蛋白质工程改造技术,研发高效廉价、易于放大的固定化方法,为减轻温室效应、延缓全球变暖这一迫切需要解决的问题提供新思路。
        The increasing atmospheric carbon dioxide levels have been correlated with global warming.Carbonic anhydrases(CA) are the fastest among the known enzymes to improve carbon capture.The capture of carbon dioxide needs high temperature and alkaline condition,which is necessary for CaCO3 precipitation in the mineralization process.In order to use CAs for biomimetic carbon sequestration,thermo-alkali-stable CAs are,therefore,essential,and polyextremophilic microbes are one of the important sources of these enzymes.The current review focuses on both those isolated by thermophilic organisms from the extreme environments and those obtained by protein engineering techniques,and the industrial application of the immobilized CAs is also briefly addressed.To reduce the greenhouse effect and delay global warming,we think further research efforts should be devoted to broadening the scope of searching for carbonic anhydrase,modifying the technology ofprotein engineering and developing highly efficient immobilization strategies.
引文
[1]Pires JCM,Alvim-Ferraz MCM,Martins FG,et al.Carbon dioxide capture from flue gases using microalgae:engineering aspects and biorefinery concept.Renew Sust Energ Rev,2012,16(5):3043-3053.
    [2]Savile CK,Lalonde JJ.Biotechnology for the acceleration of carbon dioxide capture and sequestration.Curr Opin Biotechnol,2011,22(6):818-823.
    [3]Rayalu S,Yadav R,Wanjari S,et al.Nanobiocatalysts for carbon capture,sequestration and valorisation.Top Catal,2012,55(16/18):1217-1230.
    [4]Shekh AY,Krishnamurthi K,Mudliar SN,et al.Recent advancements in carbonic anhydrase-driven processes for CO_2 sequestration:mini review.Crit Rev Environ Sci Technol,2012,42(14):1419-1440.
    [5]Sahoo PC,Jang YN,Lee SW.Immobilization of carbonic anhydrase and an artificial Zn(II)complex on a magnetic support for biomimetic carbon dioxide sequestration.J Mol Catal B Enzym,2012,82:37-45.
    [6]Ma XZ.The expression and enzymology properties of thermostable recombinant carbonic anhydrase[D].Hangzhou:Zhejiang University of Technology,2014(in Chinese).马晓舟.耐热型重组碳酸酐酶的表达及酶学性质研究[D].杭州:浙江工业大学,2014.
    [7]Supuran CT.Structure and function of carbonic anhydrases.Biochem J,2016,473(14):2023-2032.
    [8]Fiore DA,Alterio V,Monti SM,et al.Thermostable carbonic anhydrases in biotechnological applications.Int J Mol Sci,2015,16(7):15456-15480.
    [9]Simone DG,Fiore DA,Capasso C,et al.The zinc coordination pattern in theη-carbonic anhydrase from Plasmodium falciparum is different from all other carbonic anhydrase genetic families.Bioorg Med Chem Lett,2015,25:1385-1389.
    [10]Cuesta-Seijo JA,Borchert MS,Navarro JC,et al.Structure of a dimeric fungal alpha-type carbonic anhydrase.Febs Lett.2011,585:1042-1048.
    [11]Boone CD,Pinard M,McKenna R,et al.Catalytic mechanism of alpha-class carbonic anhydrases:CO_2hydration and proton transfer.Subcell Biochem,2014,75:31-52.
    [12]Maresca A,Vullo D,Scozzafava A,et al.Inhibition of the alpha-and beta-carbonic anhydrases from the gastric pathogen Helycobacter pylori with anions.J Enzym Inhib Med Chem,2013,28(2):388-391.
    [13]Ferry JG.The gamma class of carbonic anhydrases.Biochim Biophys Acta,2010,1804,374-381.
    [14]Lapointe M,MacKenzie TDB,Morse D.An externalδ-carbonic anhydrase in a free-living marine dinoflagellate may circumvent diffusion-limited carbon acquisition.Plant Physiol,2008,147(3):1427-1436.
    [15]Prete DS,Vullo D,Fisher GM,et al.Discovery of a new family of carbonic anhydrases in the malaria pathogen Plasmodium falciparum-Theη-carbonic anhydrases.Bioorg Med Chem Lett,2014,24(18):4389-4396.
    [16]Aquilano D,Otálora F,Pastero L,et al.Three study cases of growth morphology in minerals:halite,calcite and gypsum.Prog Cryst Growth Charact Mater,2016,62(2):227-251.
    [17]Hirmas DR,Amrhein C,Graham RC.Spatial and process-based modeling of soil inorganic carbon storage in an arid piedmont.Geoderma,2010,154(3/4):486-494.
    [18]Kanth BK,Min K,Kumari S,et al.Expression and characterization of codon-optimized carbonic anhydrase from Dunaliella species for CO_2sequestration application.Appl Biochem Biotechnol,2012,167(8):2341-2356.
    [19]Achal V,Pan XL.Characterization of urease and carbonic anhydrase producing bacteria and their role in calcite precipitation.Curr Microbiol,2011,62(3):894-902.
    [20]Bose H,Satyanarayana T.Microbial Carbonic anhydrases in biomimetic carbon sequestration for mitigating global warming:prospects and perspectives.Front Microbiol,2017,8:1615.
    [21]Capasso C,de Luca V,Carginale V,et al.Biochemical properties of a novel and highly thermostable bacterialα-carbonic anhydrase from Sulfurihydrogenibium yellowstonense YO3AOP1.JEnzym Inhib Med Chem,2012,27(6):892-897.
    [22]de Luca V,Vullo D,Scozzafava A,et al.Anα-carbonic anhydrase from the thermophilic bacterium Sulphurihydrogenibium azorense is the fastest enzyme known for the CO_2 hydration reaction.Bioorg Med Chem,2013,21(6):1465-1469.
    [23]Peirce S,Russo ME,Luca VD,et al.Immobilization of carbonic anhydrase for biomimetic CO_2 capture in a slurry absorber as cross-linked enzyme aggregates(CLEA).Chem Eng Trans,2015,43:259-264.
    [24]James P,Isupov MN,Sayer C,et al.The structure of a tetramericα-carbonic anhydrase from Thermovibrio ammonificans reveals a core formed around intermolecular disulfides that contribute to its thermostability.Acta Cryst,2014,70(10):2607-2618.
    [25]Jo BH,Kim IG,Seo JH,et al.Engineered Escherichia coli with periplasmic carbonic anhydrase as a biocatalyst for CO_2 sequestration.Appl Environ Microbiol,2013,79(21):6697-6705.
    [26]Chirica LC,Elleby B,Lindskog S.Cloning,expression and some properties ofα-carbonic anhydrase from Helicobacter pylori.Biochim Biophys Acta Prot Struct Mol Enzymol,2001,1544(1/2):55-63.
    [27]del Prete S,Isik S,Vullo D,et al.DNA cloning,characterization,and inhibition studies of anα-carbonic anhydrase from the pathogenic bacterium Vibrio cholerae.J Med Chem,2012,55(23):10742-10748.
    [28]Faridi S,Satyanarayana T.Novel alkalistableα-carbonic anhydrase from the polyextremophilic bacterium Bacillus halodurans:characteristics and applicability in flue gas CO_2 sequestration.Environ Sci Pollut Res,2016,23(15):15236-15249.
    [29]Ki MR,Min K,Kanth BK,et al.Expression,reconstruction and characterization of codon-optimized carbonic anhydrase from Hahella chejuensis for CO_2 sequestration application.Bioproc Biosyst Eng,2013,36(3):375-381.
    [30]Nishimori I,Minakuchi T,Morimoto K,et al.Carbonic anhydrase inhibitors:?DNA cloning and inhibition studies of theα-Carbonic anhydrase from Helicobacter pylori,a new target for developing sulfonamide and sulfamate gastric drugs.J Med Chem,2006,49(6):2117-2126.
    [31]Kim IG,Jo BH,Kang DG,et al.Biomineralization-based conversion of carbon dioxide to calcium carbonate using recombinant carbonic anhydrase.Chemosphere,2012,87(10):1091-1096.
    [32]Burghout P,Vullo D,Scozzafava A,et al.Inhibition of theβ-carbonic anhydrase from Streptococcus pneumoniae by inorganic anions and small molecules:toward innovative drug design of antiinfectives?Bioorg Med Chem,2001,19(1):243-248.
    [33]Smith KS,Ferry JG.A plant-type(β-class)carbonic anhydrase in the thermophilic methanoarchaeon Methanobacterium thermoautotrophicum.J Bacteriol,1999,181(20):6247-6253.
    [34]Ferraroni M,del Prete S,Vullo D,et al.Crystal structure and kinetic studies of a tetrameric type IIβ-carbonic anhydrase from the pathogenic bacterium Vibrio cholerae.Acta Cryst,2015,71(12):2449-2456.
    [35]Jeyakanthan J,Rangarajan S,Mridula P,et al.Observation of a calcium-binding site in theγ-class carbonic anhydrase from Pyrococcus horikoshii.Acta Cryst,2008,64(10):1012-1019.
    [36]Tripp BC,Bell CB,Cruz F,et al.A role for iron in an ancient carbonic anhydrase.J Biol Chem,2004,279(8):6683-6687.
    [37]Bose H,Satyanarayana T.Suitability of the alkalistable carbonic anhydrase from a polyextremophilic bacterium Aeribacillus pallidus TSHB1 in biomimetic carbon sequestration.Bioproc Biosyst Eng,2016,39(10):1515-1525.
    [38]Simone DG,Monti SM,Alterio V,et al.Crystal structure of the most catalytically effective carbonic anhydrase enzyme known,SazCA from the thermophilic bacterium Sulfurihydrogenibium azorense.Bioorg Med Chem Lett,2015,25(9):2002-2006.
    [39]Jakob F,Martinez R,Mandawe J,et al.Surface charge engineering of a Bacillus gibsonii subtilisin protease.Appl Microbiol Biotechnol,2013,97(15):6793-6802.
    [40]Kries H,Blomberg R,Hilvert D.De novo enzymes by computational design.Curr Opin Chem Biol,2013,17(2):221-228.
    [41]Martinez R,Jakob F,Tu R,et al.Increasing activity and thermal resistance of Bacillus gibsonii alkaline protease(BgAP)by directed evolution.Biotechnol Bioeng,2013,110(3):711-720.
    [42]Newman LM,Clark L,Ching C,et al.Carbonic anhydrase polypeptides and uses thereof:US,12684800.2010-08-19.
    [43]Alvizo O,Nguyen LJ,Savile CK,et al.Directed evolution of an ultrastable carbonic anhydrase for highly efficient carbon capture from flue gas.Proc Natl Acad Sci USA,2014,111(46):16436-16441.
    [44]Lutz S.Beyond directed evolution-semi-rational protein engineering and design.Curr Opin Biotechnol,2010,21(6):734-743.
    [45]Daigle R,Desrochers M.Carbonic anhydrase having increased stability under high temperature conditions.US,7521217.2009-04-21.
    [46]Fisher Z,Boone CD,Biswas SM,et al.Kinetic and structural characterization of thermostabilized mutants of human carbonic anhydrase II.Protein Eng Des Select,2012,25(7):347-355.
    [47]De Luca V,Prete DS,Carginale V,et al.A failed tentative to design a super carbonic anhydrase having the biochemical properties of the most thermostable CA(SspCA)and the fastest(SazCA)enzymes.JEnzyme Inhib Med Chem,2015,30(6):989-994.
    [48]Jo HB,Park T,Park JH,et al.Engineering de novo disulfide bond in bacterialα-type carbonic anhydrase for thermostable carbon sequestration.Sci Rep,2016,6:29322.
    [49]Boone CD,Rasi V,Tu C,et al.Structural and catalytic effects of proline substitution and surface loop deletion in the extended active site of human carbonic anhydrase II.FEBS J,2015,282(8):1445-1457.
    [50]Schoffelen S,van Hest JCM.Multi-enzyme systems:bringing enzymes together in vitro.Soft Matter,2012,8(6):1736-1746.
    [51]Schoffelen S,van Hest JCM.Chemical approaches for the construction of multi-enzyme reaction systems.Curr Opin Struc Biol,2013,23(4):613-621.
    [52]Pan FJ,Zhou ZM.Research and application progress of carbonic anhydrase-immobilized technology.Chem Eng,2014,42(3):11-17,58(in Chinese).潘富军,周作明.碳酸酐酶固定化技术研究与应用进展.化学工程,2014,42(3):11-17,58.
    [53]Prabhu C,Wanjari S,Gawande S,et al.Immobilization of carbonic anhydrase enriched microorganismon biopolymer based materials.J Mol Catal B:Enzym,2009,60(1/2):13-21.
    [54]Ozdemi RE.Biomimetic CO_2 sequestration:1.Immobilization of carbonic anhydrase within polyurethane foam.Energy Fuel,2009,23(11):5725-5730.
    [55]Vinoba M,Bhagiyalakshmi M,Jeong SK,et al.Carbonic anhydrase immobilized on encapsulated magnetic nanoparticles for CO_2 sequestration.Chem-Eur J,2012,18(38):12028-12034.
    [56]Yadav RR,Mudlia SN,Shekh AY,et al.Immobilization of carbonic anhydrase in alginate and its influence on transformation of CO_2 to calcite.Process Biochem,2012,47(4):585-590.
    [57]Caporaso JG,Lauber CL,Walters WA,et al.Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms.ISME J,2012,6(8):1621-1624.
    [58]Shanbhag KB,Liu BY,Fu J,et al.Self-assembled enzyme nanoparticles for carbon dioxide capture.Nano Lett,2016,16:3379-3384.
    [59]Karplus M.Molecular dynamics simulations of biomolecules.Acc Chem Res,2002,35(2):321-323.
    [60]Jo BH,Seo JH,Yang YJ,et al.Bioinspired silica nanocomposite with autoencapsulated carbonic anhydrase as a robust biocatalyst for CO_2sequestration.ACS Catal,2014,4(12):4332-4340.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700