用户名: 密码: 验证码:
环境持久性自由基及其介导的生物学损伤
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Overlooked risks and influences of environmentally persistent free radicals in the ambient media
  • 作者:张绪超 ; 赵力 ; 陈懿 ; 李冬雪 ; 胡虹 ; 储刚 ; 吴敏
  • 英文作者:ZHANG Xu-chao;ZHAO Li;CHEN Yi;LI Dong-xue;HU Hong;CHU Gang;WU Min;Faculty of Environmental Science and Engineering, Kunming University of Science and Technology;Medical School, Kunming University of Science and Technology;Yunnan Provincial Key Lab of Carbon Sequestration and Pollution Control in Soils;
  • 关键词:环境持久性自由基 ; 地球表层系统 ; 活性氧 ; 环境风险 ; 影响机理
  • 英文关键词:environmental persistent free radicals;;earth surface system;;reactive oxygen species;;environmental risks;;mechanism
  • 中文刊名:中国环境科学
  • 英文刊名:China Environmental Science
  • 机构:昆明理工大学环境科学与工程学院;昆明理工大学医学院;云南省土壤固碳与污染控制重点实验室;
  • 出版日期:2019-05-20
  • 出版单位:中国环境科学
  • 年:2019
  • 期:05
  • 基金:云南省重点研发计划资助(2018BC004);; 国家自然科学基金地区项目(41663013);国家自然科学基金重点项目(U1602231)
  • 语种:中文;
  • 页:390-399
  • 页数:10
  • CN:11-2201/X
  • ISSN:1000-6923
  • 分类号:X592
摘要
近年来,新型环境风险物质环境持久性自由基(EPFRs)被发现广泛分布于不同来源的环境介质中,如燃烧颗粒物、土壤/沉积物、天然有机质等.因其稳定性、持久性,且可以随着环境介质迁移和转化,EPFRs的生态环境风险可能被忽视.基于此,本文系统总结了存在于环境介质中的EPFRs,并归纳其分布特征;阐述了其介导的组织损伤,包括肺损伤、心血管损伤、神经毒性损伤、DNA以及细胞色素等生物大分子损伤;详述了主要由氧化应激、炎症、免疫反应以及代谢异常引起的损伤机理;最后,总结并展望了有关研究所存在的问题和未来研究方向,以期为EPFRs的生态健康风险评价和政策标准制定提供参考.
        Environmentally persistent free radicals(EPFRs) are a class of pollutants with emerging concern. They are detected in various environmental media, such as combustion products, soil/sediment, and natural organic matter, and have been attracted a great deal of research interest because of their potential toxic impacts to organisms. In this paper, the detection of EPFRs in ambient media was firstly been summarized. The negative effect or toxicity mediated of EPFRs was been described, including pulmonary injuries,cardiovascular disorders, neurotoxicities and biomacromolecule damages(such as protein, enzyme, and DNA). The mechanisms of these adverse effects(inducing oxidative stress, inflammatory and immune response and metabolic disorder) of EPFRs were discussed. We also discussed the urgently needed future research direction on EPFRs. This paper aims to provide reference for the potential risk assessment, health assessment and policy formulation of EPFRs in the environment.
引文
[1] Vejerano E, Lomnicki S M, Dellinger B. Formation and stabilization of combustion-generated, environmentally persistent radicals on Ni(Ⅱ)O supported on a silica surface[J]. Environmental Science and Technology, 2012,46(17):9406-9411.
    [2] Mas-Torrent M, Crivillers N, Rovira C, et al. Attaching persistent organic free radicals to surfaces:How and why[J]. Chemical Review,2012,112(4):2506-2527.
    [3] Lomnicki S, Truong H, Vejerano E, et al. Copper oxide-based model of persistent free radical formation on combustion-derived particulate matter[J]. Environmental Science and Technology,2008,42(13):4982-4988.
    [4] Dugas T R, Lomnicki S, Cormier S A, et al. Addressing emerging risks:Scientific and regulatory challenges associated with environmentally persistent free radicals[J]. International Journal of Environmental Research Public Health, 2016,13(6):573.
    [5] Vejerano E P, Rao G, Khachatryan L, et al. Environmentally persistent free radicals:Insights on a new class of pollutants[J]. Environmental Science and Technology,2018,52(5):2468-2481.
    [6]韩林,陈宝梁.环境持久性自由基的产生机理及环境化学行为[J].化学进展,2017,29(9):1008-1020.Han L, Chen B. Generation mechanism and fate behaviors of environmental persistent free radicals[J]. Progress in Chemistry, 2017,29(9):1008-1020.
    [7]王朋,吴敏,李浩,等.环境持久性自由基对有机污染物环境行为的影响研究进展[J].化工进展,2017,36(11):4243-4249.Wang P, Wu M, Li H, et al. Formation of environmental persistent free radicals and its influence on organic pollutant behavior:a review[J].Chemical Industry and Engineering Progress, 2017,36(11):4243-4249.
    [8]阮秀秀,孙万雪,程玲,等.环境持久性自由基的研究进展[J].上海大学学报(自然科学版),2016,22(2):114-121.Ruan X, Sun W, Cheng L, et al. Research progress of environmental persistent free radicals[J]. Journal of Shanghai University(natural science), 2016,22(2):114-121.
    [9]王婷,李浩,郭惠莹,等.邻苯二酚-Fe2O3和邻苯二酚-CuO体系中持久性自由基的形成机制及特征[J].环境化学,2016,35(3):423-429.Wang T, Li H, Guo H Y, et al. The formation and characteristics of persistent free radicals in catechol-Fe2O3/silica and catechol-CuO/silica systems[J]. Environmental Chemistry, 2016,35(3):423-429.
    [10]阮秀秀,杜巍萌,郭凡可,等.环境持久性自由基的环境化学行为[J].环境化学,2018,37(8):1780-1788.Ruan X, Du W, Guo F, et al. Environmental and chemical behaviors of environmental persistent free radicals[J]. Environmental Chemistry,2018,37(8):1780-1788.
    [11]杨莉莉,郑明辉,许杨,等.环境持久性自由基的污染特征与生成机理[J].中国科学:化学,2018,48:1-10.Yang L, Zheng M, Xu Y, et al. Pollution characteristics and formation mechanism of environmentally persistent free radicals. Scientia Sinica Chimica, 2018,48:1-10.
    [12] Jia H, Zhao S, Shi Y, et al. Formation of environmentally persistent free radicals during the transformation of anthracene in different soils:Roles of soil characteristics and ambient conditions[J]. Journal ofHazardous Materials, 2019,362:214-223.
    [13] Qin Y, Li G, Gao Y, et al. Persistent free radicals in carbon-based materials on transformation of refractory organic contaminants(ROCs)in water:A critical review[J]. Water Research, 2018,137:130-143.
    [14] Dellinger B,Pryor W A,Cueto R,et al. Role of free radicals in the toxicity of airborne fine particulate matter[J]. Chemical Research in Toxicology, 2001,14(10):1371-1377.
    [15] Feng S L,Gao D,Liao F,et al. The health effects of ambient PM2 5 and potential mechanisms[J]. Ecotoxicology and Environmental Safety,2016,128:67-74.
    [16] Pandey P, Patel D K, Khan A H, et al. Temporal distribution of fine particulates(PM2.5, PM10), potentially toxic metals, PAHs and metalbound carcinogenic risk in the population of Lucknow City, india[J].Journal of Environmental Science and Health Part A-Toxic/Hazardous Substance,2013,48(7):730-745.
    [17] Truong H, Lomnicki S, Dellinger B. Potential for misidentification of environmentally persistent free radicals as molecular pollutants in particulate matter[J]. Environmental Science and Technology, 2010,44(6):1933-1939.
    [18] Kelley M A, Hebert V Y, Thibeaux T M, et al. Model combustiongenerated particulate matter containing persistent free radicals redox cycle to produce reactive oxygen species[J]. Chemical Research in Toxicology,2013,26(12):1862-1871.
    [19] Mahne S, Chuang G C, Pankey E, et al. Environmentally persistent free radicals decrease cardiac function and increase pulmonary artery pressure[J]. American Journal of Physiology-Heart and Circulatory Physiology,2012,303(9):H1135-1142.
    [20] Balakrishna S, Lomnicki S,Mcavey K M,et al. Environmentally persistent free radicals amplify ultrafine particle mediated cellular oxidative stress and cytotoxicity[J]. Particle and Fibre Toxiclolgy,2009,6:11.
    [21] Fann N, Lamson A D,Anenberg S C, et al. Estimating the national public health burden associated with exposure to ambient PM2.5 and ozone[J]. Risk Analysis, 2012,32(1):81-95.
    [22] Elliott C T,Copes R. Burden of mortality due to ambient fine particulate air pollution(PM2.5)in interior and northern BC[J].Canadian Journal Public Health, 2011,102(5):390-393.
    [23] EPA-HQ-OAR-2007-0492National Ambient Air Quality Standards for Particulate Matter[S].
    [24] Gehling W, Dellinger B. Environmentally persistent free radicals and their lifetimes in PM2.5[J]. Environmental Science and Technology,2013,47(15):8172-8178.
    [25] Gehling W, Khachatryan L, Dellinger B. Hydroxyl radical generation from environmentally persistent free radicals(EPFRs)in PM2.5[J].Environmental Science and Technology, 2014,48(8):4266-4272.
    [26] Jia H, Zhao S, Nulaji G, et al. Environmentally persistent free radicals in soils of past coking sites:Distribution and stabilization[J].Environmental Science and Technology, 2017,51(11):6000-6008.
    [27] Yang Z, Dai D,Yao Y, et al. Extremely enhanced generation of reactive oxygen species for oxidation of pollutants from peroxymonosulfate induced by a supported copper oxide catalyst[J].Chemical Engineering Journal, 2017,322:546-555.
    [28] Yang L, Liu G, Zheng M, et al. Highly elevated levels and particle-size distributions of environmentally persistent free radicals in haze-associated atmosphere[J]. Environmental Science and Technology, 2017,51(14):7936-7944.
    [29] Kreyling W G, Semmler M, Moller W. Dosimetry and toxicology of ultrafine particles[J]. Journal of Aerosol Medicine,2004,17(2):140-152.
    [30] Saravia J, Lee G I, Lomnicki S, et al. Particulate matter containing environmentally persistent free radicals and adverse infant respiratory health effects:A review[J]. Journal of Biochemical Molecular Toxicology, 2013,27(1):56-68.
    [31]Hoek G, Raaschou-Nielsen O. Impact of fine particles in ambient air on lung cancer[J]. Chinese Journal of Cancer, 2014,33(4):197-203.
    [32] Lomnicki S, Gullett B, Stoeger T, et al. Combustion by-products and their health effects-combustion engineering and global health in the21st century:Issues and challenges[J]. International Journal of Toxicology, 2014,33(1):3-13.
    [33] Basu R, Harris M, Sie L, et al. Effects of fine particulate matter and its constituents on low birth weight among full-term infants in California[J]. Environmental Research, 2014,128(42-51).
    [34] Niu J, Liberda E N, Qu S, et al. The role of metal components in the cardiovascular effects of PM2.5[J]. PLoS One, 2013,8(12):e83782.
    [35] Franklin B A, Brook R, Pope C A. Air pollution and cardiovascular disease[J]. Current Problem Cardiology, 2015,40(5):207-238.
    [36] Wang P,Pan B,Li H, et al. The overlooked occurrence of environmentally persistent free radicals in an area with low-rank coal burning, Xuanwei, China[J]. Environmental Science and Technology,2018,52(3):1054-1061.
    [37] Dellinger B, Lomnicki S,Khachatryan L, et al. Formation and stabilization of persistent free radicals[J]. Proceedings Combustion Institute, 2007,31(1):521-528.
    [38] Thevenot P T,Saravia J, Jin N, et al. Radical-containing ultrafine particulate matter initiates epithelia-to-mesenchymal transitions in airway epithelial cells[J]. American Journal of Respiratory Cell and Molecular Biology, 2013,48(2):188-197.
    [39] Valavanidis A, Iliopoulos N, Gotsis G, et al. Persistent free radicals,heavy metals and pahs generated in particulate soot emissions and residue ash from controlled combustion of common types of plastic[J].Journal of Hazardous Materials, 2008,156(1):277-284.
    [40] Maskos Z,Khachatryan L,Cueto R, et al. Radicals from the pyrolysis of tobacco[J]. Energy and Fuels, 2005,19(3):791-799.
    [41]Zang L Y, Stone K, Pryor W A. Detection of free radicals in aqueous extracts of cigarette tar by electron spin resonance[J]. Free Radical Biology Medicine,1995,19(2):161-167.
    [42] Lyons M, Spence J. Environmental free radicals[J]. British Journal of Cancer,1960,14(4):703.
    [43] Church D F, Pryor W A. Free-radical chemistry of cigarette smoke and its toxicological implications[J]. Environmental Health Perspectives,1985,64(3):111-126.
    [44] Sussan T E,Gajghate S, Thimmulappa R K, et al. Exposure to electronic cigarettes impairs pulmonary anti-bacterial and anti-viral defenses in a mouse model[J]. PLoS One, 2015,10(2):e0116861.
    [45] Soler-Cataluna J, Martinez-Garcia M A, Sanchez P R, et al. Severe acute exacerbations and mortality in patients with chronic obstructivepulmonary disease[J]. Thorax, 2005,60(11):925-931.
    [46] Pryor W A, Terauchi K-I, Davis Jr W H. Electron spin resonance(ESR)study of cigarette smoke by use of spin trapping techniques[J].Environmental Health Perspectives, 1976,16(4):161.
    [47] Nwosu U Q Roy A, Dela Cruz A L N, et al. Formation of environmentally persistent free radical(EPFR)in iron(iii)cationexchanged smectite clay[J]. Environmental Science-Process and Impacts, 2016,8(1):42-50.
    [48] Dela Cruz A L N, Cook R L, Dellinger B, et al. Assessment of environmentally persistent free radicals in soils and sediments from three superfund sites[J]. Environmental Science-Process and Impacts,2014,16(1):44-52.
    [49] Dela Cruz A L N, Gehling W, Lomnicki S, et al. Detection of environmentally persistent free radicals at a superfund wood treating site[J]. Environmental Science and Technology, 2011,45(15):6356-6365.
    [50] Paul A, Stosser R, Zehl A, et al. Nature and abundance of organic radicals in natural organic matter:Effect of pH and irradiation[J].Environmental Science and Technology, 2006,40(19):5897-5903.
    [51] Barriquello M F, Saab S D C, Consolin Filho N, et al. Electron paramagnetic resonance characterization of a humic acid-type polymer model[J]. Journal Brazilian Chemical Society, 2010,21(12):2302-2307.
    [52] Maskos Z, Dellinger B. Formation of the secondary radicals from the aging of tobacco smoke[J]. Energy and Fuels, 2007,22(1):382-388.
    [53] Khachatryan L, Vejerano E, Lomnicki S, et al. Environmentally persistent free radicals(EPFRs). 1. Generation of reactive oxygen species in aqueous solutions[J]. Environmental Science and Technology, 2011,45(19):8559-8566.
    [54] Khachatryan L, Dellinger B. Environmentally persistent free radicals(EPFRs)-2. Are free hydroxyl radicals generated in aqueous solutions?[J]. Environmental Science and Technology, 2011,45(21):9232-9239.
    [55] Liao S, Pan B, Li H, et al. Detecting free radicals in biochars and determining their ability to inhibit the germination and growth of corn,wheat and rice seedlings[J]. Environmental Science and Technology,2014,48(15):858-8587.
    [56]赵力,陈建,李浩,等.裂解温度和酸处理对生物炭中持久性自由基产生的影响[J].环境化学,2017,36(11):2472-2478.Zhao L, Chen J, Li H, et al. Effect of pyrolysis temperature and acid treatment on the generation of free radicals in biochars[J].Environmental Chemistry, 2017,36(11):2472-2478.
    [57] Marin-Montesinos I, Paniagua J C, Peman A, et al. Paramagnetic spherical nanoparticles by the self-assembly of persistent trityl radicals[J]. Physical Chemistry Chemical Physics, 2016,18(4):3151-3158.
    [58] Dalal N S, Suryan M M, Vallyathan V, et al. Detection of reactive free radicals in fresh coal mine dust and their implication for pulmonary injury[J]. Annals of Occupational Hygiene,1989,33(1):79-84.
    [59] Dalal N S, Jafari B, Petersen M, et al. Presence of stable coal radicals in autopsied coal miners'lungs and its possible correlation to coal workers'pneumoconiosis[J]. Archives of Environmental Health, 1991,46(6):366-372.
    [60] Stone K, Bermudez E, Zang L Y, et al. The ESR properties, DNAnicking,and DNA association of aged solutions of catechol versus aqueous extracts of tar from cigarette smoke[J]. Archives of Biochemistry and Biophysics, 1995,319(1):196-203.
    [61] Dellinger B, Pryor W A, Cueto B, et al. The role of combustiongenerated radicals in the toxicity of PM2.5[J]. Proceedings of Combustion Institute, 2000,28(2):2675-2681.
    [62] Fahmy B,Ding L,You D,et al. In vitro and in vivo assessment of pulmonary risk associated with exposure to combustion generated fine particles[J]. Environmental Toxicology Pharmacology, 2010,29(2):173-182.
    [63] Saravia J, Lomnicki S, Dellinger B, et al. Environmentally persistent radicals formed during combustion processes increase proteins associated with steroid-resistant asthma[M]. C50. Update on occupational lung diseases. American Thoracic Society, 2010:A4670-A4670.
    [64] Raman G, Mahne S, Varner K J. Phenotypic switching of macrophages in response to EPFRs[J]. The FASEB Journal, 2011,25(1 Supplement):811-812.
    [65] Balakrishna S, Saravia J, Thevenot P, et al. Environmentally persistent free radicals induce airway hyperresponsiveness in neonatal rat lungs[J]. Particle and Fibre Toxicology, 2011,8(1):11
    [66] Lord K, Moll D, Lindsey J K, Et Al. Environmentally persistent free radicals decrease cardiac function before and after ischemia/reperfusion injury in vivo[J]. Journal of Receptors and Signal Transduction Research, 2011,31(2):157-167.
    [67] Wang P,Thevenot P,Saravia J,et al. Radical-containing particles activate dendritic cells and enhance thl7inflammation in a mouse model of asthma[J]. American Journal of Respiratory Cell and Molecular Biology, 2011,45(977-983).
    [68] Wang P, You D, Saravia J, et al. Maternal exposure to combustion generated pm inhibits pulmonary Thlmaturation and concomitantly enhances postnatal asthma development in offspring[J]. Particle and Fibre Toxicology, 2013,10(1):29.
    [69] Lee G I, Saravia J, You D, et al. Exposure to combustion generated environmentally persistent free radicals enhances severity of influenza virus infection[J]. Particle and Fibre Toxicology, 2014,11(1):57.
    [70] Reed J R, Cawley G F, Ardoin T G, et al. Environmentally persistent free radicals inhibit cytochrome P450activity in rat liver microsomes[J]. Toxicology Applied Pharmacology, 2014,277(2):200-209.
    [71] Burn B R, Varner K J. Environmentally persistent free radicals compromise left ventricular function during ischemia/reperfusion injury[J]. American Journal of Physiology-Heart and Circulatory Physiology,2015,308(9):H998-H 1006.
    [72] Reed J R, Dela Cruz A L N, Lomnicki S M, et al. Environmentally persistent free radical-containing particulate matter competitively inhibits metabolism by cytochrome P450 1A2[J]. Toxicology Applied Pharmacology, 2015,289(2):223-230.
    [73] Reed J R, Dela Cruz A L N, Lomnicki S M, et al. Inhibition of cytochrome P450 2B4by environmentally persistent free radicalcontaining particulate matter[J]. Biochemical Pharmacology, 2015,95(2):126-132.
    [74] Chuang G C, Xia H J, Mahne S E, et al. Environmentally persistent free radicals cause apoptosis in HL-1 cardiomyocytes[J].Cardiovascular Toxicology, 2017,17(2):140-149.
    [75] Jaligama S,Saravia J, You D, et al. Regulatory T cells and IL10suppress pulmonary host defense during early-life exposure to radical containing combustion derived ultrafine particulate matter[J].Respiratory Research, 2017,18(1):15.
    [76] Squadrito G L, Cueto R,Dellinger B, Et Al. Quinoid redox cycling as a mechanism for sustained free radical generation by inhaled airborne particulate matter[J]. Free Radical Biology and Medicine, 2001,31(9):1132-1138.
    [77] Kaiser J. Evidence mounts that tiny particles can kill[J]. Science,2000,289(5476):22-23.
    [78] Dalal N S, Newman J, Pack D, et al. Hydroxyl radical generation by coal mine dust:Possible implication to coal workers'pneumoconiosis(CWP)[J]. Free Radical Biology and Medicine, 1995,18(1):11-20.
    [79] Huang X, Zalma R, Pezerat H. Chemical reactivity of the carbon-centered free radicals and ferrous iron in coals:Role of bioavailable Fe2+in coal workers'pneumoconiosis[J]. Free Radical Research,1999,30(6):439-451.
    [80] Cormier S A, Lomnicki S,Backes W, et al. Origin and health impacts of emissions of toxic by-products and fine particles from combustion and thermal treatment of hazardous wastes and materials[J].Environmental Health Perspectives, 2006,114(6):810-817.
    [81] Valavanidis A,Fiotakis K,Bakeas E, et al. Electron paramagnetic resonance study of the generation of reactive oxygen species catalysed by transition metals and quinoid redox cycling by inhalable ambient particulate matter[J]. Redox Report, 2005,10(1):37-51.
    [82] Li N, Wang M, Bramble L A, et al. The adjuvant effect of ambient particulate matter is closely reflected by the particulate oxidant potential[J]. Environmental Health Perspectives, 2009,117(7):1116-1123.
    [83] Truong H, Lomnicki S, Dellinger B. Mechanisms of molecular product and persistent radical formation from the pyrolysis of hydroquinone[J].Chemosphere,2008,71(1):107-113.
    [84] Valavanidis A, Fiotakis K, Vlachogianni T. The Role Of Stable Free Radicals, Metals And Pahs Of Airborne Particulate Matter in Mechanisms Of Oxidative Stress And Carcinogenicity[M]. Urban Airborne Particulate Matter. Springer, 2010:411-426.
    [85] Gowdy K M, Krantz Q T, King C, et al. Role of oxidative stress on diesel-enhanced influenza infection in mice[J]. Particle and Fibre Toxicology, 2010,7(1):34.
    [86] Brook R D, Rajagopalan S, Pope C A, et al. Particulate matter air pollution and cardiovascular disease:An update to the scientific statement from the american heart association[J]. Circulation,2010,121(21):2331-2378.
    [87] Miller K A, Siscovick D S, Sheppard L, et al. Long-term exposure toair pollution and incidence of cardiovascular events in women[J].New England Journal Medicine, 2007,356(5):447-458.
    [88] Nel A. Air pollution-related illness:Effects of particles[J]. Science,2005,308(5723):804-806.
    [89] Araujo J A, Barajas B, Kleinman M, et al. Ambient particulate pollutants in the ultrafine range promote early atherosclerosis and systemic oxidative stress[J]. Circculation Research, 2008,102(5):589-596.
    [90] Pham-Huy L A, He H, Pham-Huy C. Free radicals, antioxidants in disease and health[J]. International Journal of Biomedical Science,2008,4(2):89.
    [91] Lieke T, Zhang X, Steinberg C E W, et al. Overlooked risks of biochars:Persistent free radicals trigger neurotoxicity in Caenorhabditis elegans[J]. Environmental Science and Technology,2018,52(14):7981-7987.
    [92] Donaldson K, Beswick P H, Gilmour P S. Free radical activity associated with the surface of particles:A unifying factor in determining biological activity?[J]. Toxicology Letter, 1996,88(1):293-298.
    [93] De Zwart L L, Meerman J H, Commandeur J N, et al. Biomarkers of free radical damage applications in experimental animals and in humans[J]. Free Radical Biology and Medicine, 1999,26(1/2):202-226.
    [94] Li N, Sioutas C, Cho A, et al. Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage[J]. Environmental Health Perspectives,2003,111(4):455-460.
    [95]田文静,白伟,赵春禄,等.纳米ZnO对斑马鱼胚胎抗氧化酶系统的影响[J].中国环境科学,2010,30(5):705-709.Tian W, Bai W, Zhao C,et al. Effects of ZnO nanoparticles on antioxidant enzyme system of zebrafish embryos[J]. China Environmental Science,2010,30(5):705-709.
    [96] Dellinger B,D'alessio A, D'anna A, et al. Combustion byproducts and their health effects:Summary of the 10(th)international congress[J].Environmental Engineering Science, 2008,25(8):1107-1114.
    [97] Xiao G G, Wang M Y, Li N, et al. Use of proteomics to demonstrate a hierarchical oxidative stress response to diesel exhaust particle chemicals in a macrophage cell line[J]. Journal Biological Chemistry,2003,278(50):50781-50790.
    [98] Silbajoris R, Ghio A J, Samet J M,et al. In vivo and in vitro correlation of pulmonary MAP kinase activation following metallic exposure[J]. Inhalation Toxicology, 2000,12(6):453-468.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700