用户名: 密码: 验证码:
1981-2017年西藏“一江两河”流域5 cm地温及其界限温度时空变化特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Spatial-temporal change of mean soil temperature and its critical temperature at 5 cm depth in the region of the Yarlung Zangbo River and its two tributaries of Tibet during 1981-2017
  • 作者:杜军 ; 胡军 ; 尼玛吉 ; 次旺顿珠
  • 英文作者:DU Jun;HU Jun;Nimaji;Ciwangdunzhu;Tibet Institute of Plateau Atmospheric and Environmental Science Research;Tibet Autonomous Region Climate Centre;
  • 关键词:变化趋势 ; 气候突变 ; 5 ; cm地温 ; 界限温度 ; 西藏“一江两河”流域
  • 英文关键词:variation trend;;climate abrupt;;mean soil temperature at 5-cm depth;;critical temperature;;the Yarlung Zangbo River and its two tributaries
  • 中文刊名:地理学报
  • 英文刊名:Acta Geographica Sinica
  • 机构:西藏高原大气环境科学研究所;西藏自治区气候中心;
  • 出版日期:2019-09-23 10:15
  • 出版单位:地理学报
  • 年:2019
  • 期:09
  • 基金:国家自然科学基金项目(41765011)~~
  • 语种:中文;
  • 页:117-130
  • 页数:14
  • CN:11-1856/P
  • ISSN:0375-5444
  • 分类号:P423
摘要
利用西藏"一江两河"流域9个气象站点1981-2017年逐日5 cm地温资料,采用线性回归、Mann-Kendall非参数检验等方法,分析了该流域5 cm地温及其界限温度的时空分布、突变特征,并探讨了地温变化率与经纬度、海拔高度之间的关系。结果表明:"一江两河"流域年、季平均5 cm地温总体呈自西向东递增分布,并随海拔升高而降低。1981-2017年流域月平均5 cm地温均呈显著升高趋势,升温率为0.23~0.98℃/10a,以4月最大,7月最小。年平均5 cm地温以0.58℃/10a的速率显著升高,各季地温也都趋于上升,其中春季升温率最大,夏季最小。5 cm地温≥12℃表现为初日提早、终日推迟、持续日数延长、积温增加的年际变化趋势。同样,≥14℃界限温度也有类似的变化,但变幅比≥12℃的要大。在10年际变化尺度上,流域年、季平均5cm地温表现为逐年代际升高的变化特征。5 cm地温≥12℃和≥14℃界限温度在21世纪前10年呈初日提早、持续日数延长和积温偏多的态势。M-K检验显示,除夏季外,其他三季平均5cm地温均发生了气候突变,其中春季和秋季的突变点分别出现在2004年和2005年,而冬季发生在1997年;年平均5 cm地温在2003年出现了突变。5 cm地温≥12℃初日的突变点在2004年,终日发生突变时间较晚,为2014年;持续日数突变点较早,在1997年;积温在2005年发生了突变。而5 cm地温≥14℃界限温度的突变点发生在2004年前后。相对于气温的变化,5 cm地温的升温幅度更大,突变时间较晚。
        Based on daily mean soil temperature at 5-cm depth from 9 meteorological stations in the Yarlung Zangbo River and its two tributaries in Tibet from 1981 to 2017, the spatialtemporal distribution and climate abrupt characteristics of the mean soil temperature and its critical temperature at 5-cm depth have been comprehensively analyzed using the methods of linear regression and Mann-Kendall test. In particular, the dependence of the change rates of mean soil temperature at 5-cm depth has been explored on the altitudes and longitudes as well.The results show that the annual and seasonal mean soil temperature at 5-cm depth increases gradually from west to east but decreases with the altitude. During 1981-2017, the monthly mean soil temperature exhibits a significantly increasing trend with a rate of 0.23-0.98 ℃/10 a,with a peak value occurring in April and the trough value in July. Also, the annual mean soil temperature exhibits a significant upward trend at a rate of 0.58 ℃/10 a. Noticeably, the maximum increasing rate occurs in spring and the minimum in summer. In terms of the critical soil temperature ≥ 12 ℃ at 5-cm depth, the first day occurred much earlier, whereas the terminal day was postponed, the duration and elevated accumulated temperature were prolonged. Similarly, the critical soil temperature ≥ 14 ℃ exhibits a similar pattern albeit a larger amplitude. As for the trend over decadal timescale, the annual and seasonal mean soil temperature at 5-cm depth in the watershed investigated here exhibits a pronounced increasing trend. The selection of ≥ 12 ℃(14 ℃) critical soil temperature at 5-cm depth points to the predated first day, prolonged duration and increased cumulated temperature in the first decade of the 21 st century. The M-K mutation test shows that the abrupt change of seasonal mean soil temperature at 5-cm depth in spring and autumn occurred in 2004 and 2005, respectively,whereas the abrupt changes occurred in the winter of 1997, and the mutation of annual mean soil temperature was found in 2005. Furthermore, it was also found that abrupt change point occurred in 2004 for the first day of critical soil temperature ≥ 12 ℃, and a later abrupt point happened in 2014 for the terminal day, as compared to the duration in 1997, and the accumulated temperature occurred in 2005. By comparison, the abrupt change point for the first day, the terminal day, the duration and the accumulated temperature for the critical soil temperature ≥ 14 ℃ at 5-cm depth occurred around 2004. Compared to the variation in air temperature, soil temperature at 5-cm depth from 1981 to 2017 had a larger increasing rate of temperature and but a delayed abruption change point.
引文
[1] IPCC. Climate Change 2013:The Physical Science Basis, The Summary for Policymakers of the Working Group I Contribution to the Fifth Assessment Report. New York:Cambridge University Press, 2013.
    [2] Ye Duzheng, Zhang Jieqian. A preliminary experimental simulation on the heating effect of the Tibetan Plateau on the general circulation over eastern Asia in summer. Science in China, 1974, 3:301-320.[叶笃正,张捷迁.青藏高原加热作用对夏季东亚大气环流影响的初步模拟实验.中国科学, 1974, 3:301-320.]
    [3] Zhang Jijia, Zhu Baozhen, Zhu Fukang, et al. The Progress Introduction on the Study of Tibetan Plateau Meteorology.Beijing:Science Press, 1988.[章基嘉,朱抱真,朱福康,等.青藏高原气象学进展.北京:科学出版社, 1988.]
    [4] Zheng Qinglin, Wang Sanshan, Zhang Chaolin, et al. Numerical study of the effects of dynamic and thermodynamic of Qinghai-Xizang Plateau on tropical atmospheric circulation in summer. Plateau Meteorology, 2001, 20(1):14-21.[郑庆林,王三杉,张朝林,等.青藏高原动力和热力作用对热带大气环流影响的数值研究.高原气象, 2001, 20(1):14-21.]
    [5] Qian Yongfu. Numerical simulation of the effects of underlying surfaces on the climate change. Chinese Journal of Atmospheric Sciences, 1993, 17(3):283-293.[钱永甫.气候变化中下垫面作用的数值模拟.大气科学, 1993, 17(3):283-293.]
    [6] Jian Maoqiu, Luo Huibang. Daily variation of heat sources over the eastern Qinghai-Xizang Plateau and surrounding areas and their relationship to the circulation over the Tibetan Plateau. Plateau Meteorology, 2002, 21(1):25-30.[简茂球,罗会邦. 1998年5-8月青藏高原东部和邻近地区大气热源日变化特征及其与高原环流的关系.高原气象, 2002,21(1):25-30.]
    [7] Li Juan, Li Yueqing, Jiang Xingwen, et al. Characteristics of land-atmosphere energy exchanges over complex terrain area of southeastern Tibetan Plateau under different synoptic conditions. Chinese Journal of Atmospheric Sciences,2016, 40(4):777-791.[李娟,李跃清,蒋兴文,等.青藏高原东南部复杂地形区不同天气状况下陆气能量交换特征分析.大气科学, 2016, 40(4):777-791.]
    [8] Dai Jiaxi. Climate of Qinghai-Xizang Plateau. Beijing:China Meteorological Press, 1990.[戴加洗.青藏高原气候.北京:气象出版社, 1990.]
    [9] Liu Xiaodong, Luo Siwei, Qian Yongpu. Numerical simulations of influences of different thermal characteristics on ground surface of Tibetan Plateau on the over SE-Asia. Plateau Meteorology, 1989, 8(3):205-216.[刘晓东,罗四维,钱永莆.青藏高原地表热状况对夏季东亚大气环流影响的数值模拟.高原气象, 1989, 8(3):205-216.]
    [10] Li Dongliang, Zhong Hailing, Wu Qingbai, et al. Analysis on change of surface temperature over Qinghai-Xizang Plateau. Plateau Meteorology, 2005, 24(3):291-298.[李栋梁,钟海玲,吴青柏,等.青藏高原地表温度的变化分析.高原气象, 2005, 24(3):291-298.]
    [11] Sun Zhizhong, Ma Wei, Mu Yanhu, et al. Permafrost change under natural sites along the Qinghai-Tibet Railway during the years of 2006-2015. Advances in Earth Science, 2018, 33(3):248-256.[孙志忠,马巍,穆彦虎,等.青藏铁路沿线天然场地多年冻土变化.地球科学进展, 2018, 33(3):248-256.]
    [12] Pang Qiangqiang, Zhao Lin, Li Shuxun. Influences of local factors on ground temperatures in permafrost regions along the Qinghai-Tibet Highway. Journal of Glaciology and Geocryology, 2011, 33(2):349-356.[庞强强,赵林,李述训.局地因素对青藏公路沿线多年冻土区地温影响分析.冰川冻土, 2011, 33(2):349-356.]
    [13] Pan Weidong, Yu Shaoshui, Jia Haifeng, et al. Variation of the ground temperature field in permafrost regions along the Qinghai-Tibetan Railway. Journal of Glaciology and Geocryology, 2002, 24(6):774-779.[潘卫东,余绍水,贾海锋,等.青藏铁路沿线地温场变化规律.冰川冻土, 2002, 24(6):774-779.]
    [14] Hu Jun, Du Jun, Bian Duo, et al. Interannual and interdecadal variations of soil temperature over Tibet Plateau from1971 to 2005. Acta Geographica Sinica, 2007, 62(9):925-934.[胡军,杜军,边多,等.西藏地温的年际和年代际变化.地理学报, 2007, 62(9):925-934.]
    [15] Du Jun, Hu Jun, Luobuciren, et al. Response of shallow geotemperature to climatic change over Tibet from 1971 to2005. Journal of Glaciology and Geocryology, 2008, 30(5):745-751.[杜军,胡军,罗布次仁,等.西藏浅层地温对气候变化的响应.冰川冻土, 2008, 30(5):745-751.]
    [16] Liu Guangyue, Zhao Lin, Xie Changwei, et al. Variation characteristics and impact factors of the depth of zero annual amplitude of ground temperature in permafrost regions on the Tibetan Plateau. Journal of Glaciology and Geocryology,2016, 38(5):1189-1200.[刘广岳,赵林,谢昌卫,等.青藏高原多年冻土区地温年变化深度的变化规律及影响因素.冰川冻土, 2016, 38(5):1189-1200.]
    [17] Hu Songjie. An Introduction to Agriculture of Tibet. Chengdu:Sichuan Science and Technology Press, 1995.[胡颂杰.西藏农业概论.成都:四川科学技术出版社, 1995.]
    [18] Si Fengtai, Meng Ruijuan. Variation characteristics of soil temperature in Heze of Shandong province under the background of climate warming. Journal of Shandong Meteorology, 2013, 33(3):9-11.[司奉泰,孟瑞娟.气候变暖背景下菏泽地温的变化特征.山东气象, 2013, 33(3):9-11.]
    [19] Bian Duo, Du Jun. Climate variation feature and its effect on environment change in central Tibet from 1961 to 2000Journal of Applied Meteorological Science, 2006, 17(2):169-175.[边多,杜军.近40年西藏一江两河流域气候变化特征.应用气象学报, 2006, 17(2):169-175.]
    [20] Du Jun, Hu Jun, Zhou Baoqin, et al. Responses of climate-productivity to climatic change in central Tibet from 1961 to2005. Agricultural Research in the Arid Areas, 2008, 26(1):141-145.[杜军,胡军,周保琴,等.西藏一江两河地区作物气候生产力对气候变化的响应.干旱地区农业研究, 2008, 26(1):141-145.]
    [21] You Qinglong, Kang Shichang, Yan Yuping, et al. Trends in daily temperature and precipitation extremes over the Yarlung Zangbo River basin during 1961-2005. Acta Geographica Sinica, 2009, 64(5):592-600.[游庆龙,康世昌,闫宇平,等.近45年雅鲁藏布江流域极端气候事件趋势分析.地理学报, 2009, 64(5):592-600.]
    [22] Du Jun, Bian Dor, Lhak Pa, et al. Changes in evapotranspiration in the main agriculture areas of central Tibet and its relations to environment factors in 1971-2005. Journal of Glaciology and Geocryology, 2009, 31(5):815-823.[杜军,边多,拉巴,等. 1971-2005年西藏主要农区农田蒸散量变化及与环境因子的关系.冰川冻土, 2009, 31(5):815-823.]
    [23] Zhang Geli, Ouyang Hua, Zhou Caiping, et al. Response of agricultural thermal resources to climate change in the region of the Brahmaputra River and its two tributaries in Tibet during past 50 years. Resources Science, 2010, 32(10):1943-1954.[张戈丽,欧阳华,周才平,等.近50年来气候变化对西藏“一江两河”地区农业气候热量资源的影响.资源科学, 2010, 32(10):1943-1954.]
    [24] Du Jun, Ma Pengfei, Yuan Lei. Precipitation variation characteristics in critical water requirement period of rape in central Tibet. Chinese Agricultural Science Bulletin, 2016, 32(3):170-174.[杜军,马鹏飞,袁雷.西藏“一江两河”流域油菜需水关键期降水的变化特征.中国农学通报, 2016, 32(3):170-174.]
    [25] Tao Heping, Gao Pan, Zhong Xianghso. A study of regional eco-environment vulnerabilit:A case of"One-River-TwoTributaries", Tibet. Journal of Mountain Science, 2006, 24(6):761-768.[陶和平,高攀,钟祥浩.区域生态环境脆弱性评价—以西藏“一江两河”地区为例.山地学报, 2006, 24(6):761-768.]
    [26] Li Mingsen. Rational development of the land resource of the"YLN"region in Tibet. Journal of Natural Resources,1997, 12(2):24-30.[李明森.西藏“一江两河”地区土地资源合理开发.自然资源学报, 1997, 12(2):24-30.]
    [27] Yan Lingyun. Agrometeorology. Beijing:China Agriculture Press, 2001.[阎凌云.农业气象.北京:中国农业出版社,2001.]
    [28] Wei Fengying. Modern Climatic Statistical Diagnosis and Forecasting Technology. Beijing:China Meteorological Press,1999.[魏凤英.现代气候统计诊断与预测技术.北京:气象出版社, 1999.]
    [29] Zhou Kanshe, Luo Suxuan, Du Jun, et al. Response of soil temperature to air temperature change in Tibet Plateau.Chinese Journal of Agrometeorology, 2015, 36(2):129-138.[周刊社,罗骕翾,杜军,等.西藏高原地温对气温变化的响应.中国农业气象, 2015, 36(2):129-138.]
    [30] Wang Jialin, Pan Zhihua, Han Guolin, et al. Variation in ground temperature at a depth of 0 cm and the relationship with airtemperature in China from 1961 to 2010. Resources Science, 2016, 38(9):1733-1741.[王佳琳,潘志华,韩国琳,等.1961-2010年中国0 cm地温变化特征及其与气温变化的关系.资源科学, 2016, 38(9):1733-1741.]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700