用户名: 密码: 验证码:
施硅降低碱性土壤铅生物有效性的机制研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preliminary study on the mechanism by which silicon application reduces lead bioavailability in alkaline soil
  • 作者:刘鸣达 ; 张婧婷 ; 马聪 ; 王耀晶
  • 英文作者:LIU Ming-da;ZHANG Jing-ting;MA Cong;WANG Yao-jing;College of Land and Environment, Shenyang Agricultural University;College of Science, Shenyang Agricultural University;
  • 关键词: ; ; 水稻 ; 碱性土壤 ; 生物有效性
  • 英文关键词:silicon;;lead;;rice;;alkaline soil;;bioavailability
  • 中文刊名:农业环境科学学报
  • 英文刊名:Journal of Agro-Environment Science
  • 机构:沈阳农业大学土地与环境学院;沈阳农业大学理学院;
  • 出版日期:2019-03-20
  • 出版单位:农业环境科学学报
  • 年:2019
  • 期:03
  • 基金:国家自然科学基金项目(41101290)~~
  • 语种:中文;
  • 页:77-84
  • 页数:8
  • CN:12-1347/S
  • ISSN:1672-2043
  • 分类号:X53
摘要
为明确硅降低碱性土壤铅生物有效性的机制,在中和硅酸钠碱性和消除钠离子影响的基础上,采取吸附-解吸试验、红外分析和盆栽试验相结合的方式,研究了硅对碱性土壤液相、固相和固液界面铅行为以及水稻产量与稻米铅含量的影响。结果表明,加硅降低了碱性土壤吸附铅的容量和强度,增强了铅吸附-解吸过程中的滞后效应;应用红外光谱表征溶液中硅铅反应产物,发现Si-O弯曲振动吸收峰和Si-O-Si反对称伸缩振动特征峰均出现了红移,暗示硅酸或聚硅酸与铅发生了配位反应,生成了水溶性复合物;施硅使土壤酸可提取态和可还原态铅含量分别降低了11.18%、18.54%;可氧化态和残渣态铅分别提高了42.56%、7.84%;与对照相比,铅胁迫下水稻产量降低了64.5%(P<0.01),糙米铅含量明显升高(P<0.01),达到了0.31 mg·kg-1;与铅胁迫处理相比,施硅使水稻产量提高了152.3%(P<0.01),明显降低糙米铅的含量(P<0.01),并符合国家标准的安全要求。综上,在碱性土壤中,促进土壤液相、固相铅向无效态转化,抑制固相铅解吸是施硅降低铅生物有效性的土壤化学机制。
        In order to clarify the mechanism of silicon reduces the bioavailability of lead in alkaline soils, by neutralizing the effects of sodium silicate alkalinity and eliminating sodium ions, the effects of silicon affected the behavior of lead, liquid, solid-liquid, and solid-liquid interfaces in alkaline soils, rice yields and lead content in rice were studied. Testing included adsorption-desorption testing, infrared analyses and pot experiments. The results showed that silicon addition reduced the capacity and strength of lead adsorption in alkaline soils, while enhancing the lag effect in lead adsorption-desorption processes. The reaction products of silicon-lead in solution were characterized by infrared spectroscopy, and it was found that both the bending vibration absorption peak of Si-O, and the anti-symmetric stretching vibration characteristic peak of Si-O-Si appeared to red shift, suggesting that the coordination reactions of either silicic acid or polysilicic acid with lead resulted in the formation of water-soluble complexes. Silicon addition reduced the contents of acid extractable and reducible lead by11.18% and 18.54% respectively. Oxidizable lead and residual lead were observed to increase by 42.56% and 7.84% respectively, while compared with the control, rice yield decreased by 64.5%(P<0.01), and the lead content of brown rice increased significantly(P<0.01),reaching 0.31 mg·kg-1. Compared with lead stress treatment, silicon addition increased rice yield by 152.3%(P<0.01), while the lead content in brown rice decreased significantly, to the extent that the content of lead in brown rice(P<0.01)met the safety requirements specified in the applicable national standard. In conclusion, the experiments showed that silicon addition promoted the transformation of soil liquid and solid lead to an ineffective state and inhibited desorption of solid lead, thus demonstrating the chemical mechanism which reduced the bioavailability of lead in alkaline soils.
引文
[1] Guo L, Chen A, He N, et al. Exogenous silicon alleviates cadmium toxicity in rice seedlings in relation to Cd distribution and ultrastructure changes[J]. Journal of Soils and Sediments, 2018, 18(4):1691-1700.
    [2] Li L, Ai S, Li Y, et al. Exogenous silicon mediates alleviation of cadmium stress by promoting photosynthetic activity and activities of antioxidative enzymes in rice[J]. Journal of Plant Growth Regulation, 2018, 37(2):602-611.
    [3]李江遐,张军,马友华,等.硅对镉胁迫条件下两个水稻品种镉亚细胞分布、非蛋白巯基物质含量的影响[J].农业环境科学学报,2018, 37(6):1066-1071.LI Jiang-xia, ZHANG Jun, MA You-hua, et al. Effects of silicon on cadmium accumulation and non-protein thiol content in the seedlings of two rice varieties under cadmium stress[J]. Journal of Agro-Environment Science, 2018, 37(6):1066-1071.
    [4] Liang Y, Sun W, Zhu Y G, et al. Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants:A review[J]. Environmental Pollution, 2007, 147(2):422-428.
    [5] Ma J F, Sasaki M, Matsumoto H. Al-induced inhibition of root elongation in corn, Zea mays L. is overcome by Si addition[J]. Plant&Soil,1997, 188(2):171-176.
    [6] Cocker K M, Evans D E, Hodson M J. The amelioration of aluminium toxicity by silicon in higher plants:Solution chemistry or an in planta mechanism?[J]. Physiologia Plantarum, 2010, 104(4):608-614.
    [7]蔡德龙,陈常友,小林均.硅肥对水稻镉吸收影响初探[J].地域研究与开发, 2000, 19(4):69-71.CAI De-long, CHEN chang-you, XIAO Lin-jun. The influence of the silicon fertilizer on the Cd absorption by paddy[J]. Areal Research and Development, 2000, 19(4):69-71.
    [8]陈怀满.土壤-植物系统中的重金属污染[M].北京:科学出版社,1996.CHEN Huai-man. Heavy metal contamination in soil-plant system[M].Beijing:Science Press, 1996:115-125.
    [9] Neumann D, Nieden U Z. Silicon and heavy metal tolerance of higher plants[J]. Phytochemistry, 2001, 56(7):685-692.
    [10] Ping L, Wang X X, Zhang T L, et al. Distribution and accumulation of copper and cadmium in soil-rice system as affected by soil amendments[J]. Water Air&Soil Pollution, 2009, 196(1-4):29-40.
    [11]陈晓婷,王果,梁志超,等.钙镁磷肥和硅肥对Cd、Pb、Zn污染土壤上小白菜生长和元素吸收的影响[J].福建农林大学学报(自然科学版), 2002, 31(1):109-112.CHEN Xiao-ting, WANG Guo, LIANG Zhi-chao, et al. Effects of calcium magesium phosphate and silicon fertilizer on the growth and element uptake of pakchoi in cadmium, lead and zinc contaminated soil[J]. Journal of Fujian Agriculture and Forestry University(Natural Science Edition), 2002, 31(1):109-112.
    [12]何电源.湖南主要农田土壤硅的形态含量和有效性及炉渣硅肥的开发研究[J].农业现代化研究, 1993(1):43-47.HE Dian-yuan. Study on the form and availability of silicon in the main farmland soils of Hunan Province and the development of slag silicon fertilizer[J]. Research of Agricultural Modernization, 1993(1):43-47.
    [13]赵明柳,唐守寅,董海霞,等.硅酸钠对重金属污染土壤性质和水稻吸收Cd Pb Zn的影响[J].农业环境科学学报, 2016, 35(9):1653-1659.ZHAO Ming-liu, TANG Shou-yin, DONG Hai-xia, et al. Effects of sodium silicate on soil properties and Cd, Pb and Zn absorption by rice plant[J]. Journal of Agro-Environment Science, 2016, 35(9):1653-1659.
    [14] Li L, Zheng C, Fu Y, et al. Silicate-mediated alleviation of Pb toxicity in banana grown in Pb-contaminated soil[J]. Biological Trace Element Research, 2012, 145(1):101-108.
    [15]王凯荣,张玉烛,胡荣桂.不同土壤改良剂对降低重金属污染土壤上水稻糙米铅镉含量的作用[J].农业环境科学学报, 2007, 26(2):476-481.WANG Kai-rong, ZHANG Yu-zhu, HU Rong-gui. Effects of different types of soil amelioration materials on reducing concentrations of Pb and Cd in brown rice in heavy metal polluted paddy soils[J]. Journal of Agro-environment Science, 2007, 26(2):476-481.
    [16]周卫,汪洪,李春花,等.添加碳酸钙对土壤中镉形态转化与玉米叶片镉组分的影响[J].土壤学报, 2001, 38(2):219-225.ZHOU Wei, WANG Hong, LI Chun-hua, et al. Effect of calcium carbonate addition on transformation of cadmium species in soil and cadmium in leaves of maize[J]. Acta Pedologica Sinica, 2001, 38(2):219-225.
    [17]刘鸣达,陈蕾蕾,王耀晶.外源硅对不同pH水田土壤吸附铅的影响[J].环境工程学报, 2012, 6(5):1658-1662.LIU Ming-da, CHEN Lei-lei, WANG Yao-jing. Influence of silicon in adsorption of lead on paddy soil with different pH[J]. Chinese Journal of Environmental Engineering, 2012, 6(5):1658-1662.
    [18]鲍士旦.土壤农化分析[M]. 3版.北京:中国农业出版社,2000.BAO Shi-dan. Soil and agricultural chemistry analysis[M]. 3rd edition Beijing:Chinese Agriculture Press, 2000.
    [19]刘甜田,何滨,王亚韩,等.改进BCR法在活性污泥样品重金属形态分析中的应用[J].分析试验室, 2007, 26(增刊1):17-20.LIU Tian-tian, HE Bin, WANG Ya-han, et al. Application of amended sequential extraction procedure of BCR in sludge for heavy metals determination[J], Chinese Journal of Analysis Laboratory, 2007, 26(Suppl 1):17-20.
    [20]中华人民共和国国家卫生和计划生育委员会,国家食品药品监督管理总局.食品安全国家标准食品中污染物限量GB 2762—2017[S].北京:中国标准出版社, 2017.National Health and Family Planning Commission of the People’s Republic of China, China Food and Drug Administration. National food safety standard-limit of contaminants in food GB 2762—2017[S]. Beijing:China Standards Press, 2007.
    [21]朱端卫,皮美美,刘武定.硼在土壤中的吸附-解吸及其对植物吸收硼的影响[J].土壤学报, 1998, 35(1):70-75.ZHU Duan-wei, PI Mei-mei, LIU Wu-ding. Adsorption-desorption of boron in soils its effect on boron uptake of plant[J]. Acta Pedologica Sinica, 1998, 35(1):70-75.
    [22] Yang H, Xu R, Xue X, et al. Hybrid surfactant-templated mesoporous silica formed in ethanol and its application for heavy metal removal[J].Journal of Hazardous Materials, 2008, 152(2):690-698.
    [23]李坤权,刘建国,陆小龙,等.水稻不同品种对镉吸收及分配的差异[J].农业环境科学学报, 2003, 22(5):18-21.LI Kun-quan, LIU Jian-guo, LU Xiao-long, et al. Uptake and distribution of cadmium in different rice cultivars[J]. Journal of Agro-Environmental Science. 2003, 22(5):529-532.
    [24]毛金梅,翟飞飞,刘俊祥,等.硅对蒿柳铅胁迫的调控[J].林业科学, 2018, 54(2):60-67.MAO Jin-mei, ZHAI Fei-fei, LIU Jun-xiang, et al. The regulation of silicon to lead stress in Salix viminalis[J]. Scientia Silvae Sinicae,2018, 54(2):60-67.
    [25]柳赛花,黄涓,纪雄辉,等.不同硅材料处理的磷酸盐矿对水稻生长及体内重金属含量的影响[J].作物研究, 2014(增刊2):896-900.LIU Sai-hua, HUANG Juan, JI Xiong-hui, et al. Effects of phosphate ore treated with different silicon materials on rice growth and heavy metal contents in rice[J]. Crop Research, 2014(Suppl 2):896-900.
    [26]鲍娜娜,王中阳.硅对水稻体内铅化学形态的影响[J].农业科技与装备, 2014(4):12-13.BAO Na-na, WANG Zhong-yang. Effects of Si on chemical form of Pb in two kinds of rice[J]. Agricultural Science&Technology and Equipment, 2014(4):12-13.
    [27]李学垣.土壤化学[M].北京:高等教育出版社, 2001.LI Xue-yuan. Soil chemistry[M]. Beijing:High Education Press, 2000.
    [28] Parker D R, Pedler J F. Reevaluating the free-ion activity model of trace metal availability to higher plants[J]. Plant and Soil, 1996, 196(2):223-228.
    [29]谢正苗.土壤环境中铅的化学[J].广东微量元素科学, 1996(11):24-28.XIE Zheng-miao. Chemistry of lead in the environment[J]. Guangdong Trace Elements Science, 1996(11):24-28.
    [30] Takahashi E, Hino K. Silica uptake by rice plant with special reference to the forms of dissolved silica[J]. Journal of the Science of Soil and Manure Japan, 1978, 49:357-360.
    [31]葛学贵,马广伟,黄少云,等. La骨架负载中孔分子筛的合成与表征[J].稀土, 2004, 25(6):1-4.GE Xue-gui, MA Guang-wei, HUANG Shao-yun, et al. Synthesis and characterization of materials La-MCM-41 mesoporous molecular sieves with La skeleton adulteration[J]. Chinese Rare Earths, 2004, 25(6):1-4.
    [32]翁诗甫.傅里叶变换红外光谱分析[M].北京:化学工业出版社,2010.WENG Shi-fu. Fourier transform infrared spectrometer[M]. Beijing:Chemical Industry Press, 2010.
    [33]高明,魏朝富,陈世正,等.紫色水稻土对硅酸盐的吸附与解吸特性研究[J].土壤通报, 1998, 29(4):179-181.GAO Ming, WEI Chao-fu, CHEN Shi-zheng, et al. Characteristics of silicate adsorption and desorption in purple paddy soil[J]. Chinese Journal of Soil Science, 1998, 29(4):179-181.
    [34]戴安邦,江龙.硅酸及其盐的研究Ⅰ.硅酸聚合的速度和机制[J].化学学报, 1957, 2:90-98.DAI An-bang, JIANG Long. Studies on silicic acid and its salts:Ⅰ.Rate of gelation and mechanism of polymerization of silicic acid[J].Acta Chimica Sinica, 1957, 2:90-98.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700