用户名: 密码: 验证码:
温度和氨氮浓度对水体N_2O释放的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Coupling effect of temperature and ammonia on N_2O emission in surface water
  • 作者:路俊玲 ; 陈慧萍 ; 肖琳
  • 英文作者:LU Jun-ling;CHEN Hui-ping;XIAO Lin;State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University;
  • 关键词:氧化亚氮 ; 温度 ; 硝化 ; 反硝化 ; 结构方程模型
  • 英文关键词:nitrous oxide;;temperature;;nitrification;;denitrification;;structural equation mode
  • 中文刊名:中国环境科学
  • 英文刊名:China Environmental Science
  • 机构:南京大学环境学院污染控制与资源化国家重点实验室;
  • 出版日期:2019-01-20
  • 出版单位:中国环境科学
  • 年:2019
  • 期:01
  • 基金:国家水体污染控制与治理科技重大专项(2017ZX07204002)
  • 语种:中文;
  • 页:332-337
  • 页数:6
  • CN:11-2201/X
  • ISSN:1000-6923
  • 分类号:X52
摘要
氧化亚氮的释放已经成为了一个全球性的环境问题,水体中N_2O的释放量会随着氮含量的增加而增加.本文通过微宇宙系统的构建,分析氮的转化过程和氮转化基因的变化,并结合结构方程模型分析了温度、氨氮含量对水体N_2O释放的贡献.研究结果发现氨氧化古菌和反硝化细菌丰度均与N_2O释放呈正相关,表明水体中的硝化和反硝化作用都会造成N_2O的释放.氨氮浓度的升高并不直接促进N_2O的释放,而温度和通过硝化作用产生的硝态氮对N_2O的释放有促进作用.此外,硝化速率通过促进亚硝态氮和反硝化菌的丰度而间接地促进N_2O的释放.
        The increase of nitrous oxide emission has become a worldwide problem. The emission of nitrous oxide from water body increased with the increase of N inputs. Our study analyzed the roles of temperature and ammonia in N_2 O emission through quantification of nitrogen transformation and related functional genes. The results showed that the abundance of ammonia oxidizing archaea and denitrifiers positively correlated to N_2 O emission in water. Structural equation model revealed ammonia content had no direct effect on N_2 O emission, however, high temperature and nitrification directly accelerated the release of N_2 O. In addition, nitrification process also increased the release of N_2 O indirectly through promoting abundance of denitrifiers and nitrite content.
引文
[1]Wang H,Yang L,Wang W,et al.Nitrous oxide(N_2O)fluxes and their relationships with water-sediment characteristics in a hyper-eutrophic shallow lake,China[J].Journal of Geophysical Research:Biogeosciences,2007,112(G1):129-137.
    [2]Liu W,Wang Z,Zhang Q,et al.Sediment denitrification and nitrous oxide production in Chinese plateau lakes with varying watershed land uses[J].Biogeochemistry,2015,123(3):379-390.
    [3]Marzadri A,Dee M M,Tonina D,et al.Role of surface and subsurface processes in scaling N_2O emissions along riverine networks[J].Proceedings of the National Academy of Sciences,2017,114(17):4330-4335.
    [4]Wan S,Ward T L,Altosaar I.Strategy and tactics of disarming GHG at the source:N_2O reductase crops[J].Trends in Biotechnology,2012,30(8):410-415.
    [5]Ravishankara A R,Daniel J S,Portmann R W.Nitrous oxide(N_2O):the dominant ozone-depleting substance emitted in the 21st century[J].Science,2009,326(5949):123-125.
    [6]郭树芳,齐玉春,董云社,等.滴灌对农田土壤CO2和N_2O产生与排放的影响研究进展[J].中国环境科学,2014,34(11):2757-2763.Guo S,Qi Y,Dong Y,et al.Response of production and emission of CO2 and N_2O of agricultural soil to drip irrigation[J].China Environmental Science,2014,34(11):2757-2763.
    [7]Myhre G,Shindell D,Breon F M,et al.Anthropogenic and natural radiative forcing[J].Climate Change,2013,423:658-740.
    [8]McMahon P B,Dennehy K F.N_2O Emissions from a NitrogenEnriched River[J].Environmental Science&Technology,1999,33(1):21-25.
    [9]Seitzinger S P,Kroeze C.Global distribution of nitrous oxide production and N inputs in freshwater and coastal marine ecosystems[J].Global Biogeochemical Cycles,1998,12(1):93-113.
    [10]Wrage N,Lauf J,del Prado A,et al.Distinguishing sources of N_2O in European grasslands by stable isotope analysis[J].Rapid Communications in Mass Spectrometry,2014,18(11):1201-1207.
    [11]Philippot L,Hallin S,Schloter M.Ecology of denitrifying prokaryotes in agricultural soil[J].Advances in Agronomy,2007,96:249-305.
    [12]Hink L,Lycus P,Gubry-Rangin C,et al.Kinetics of NH3-oxidation,NO-turnover,N_2O-production and electron flow during oxygen depletion in model bacterial and archaeal ammonia oxidisers[J].Environmental Microbiology,2017,19(12):4882-4896.
    [13]White C J,Lehnert N.Is there a pathway for N_2O production from hydroxylamine oxidoreductase in ammonia-oxidizing bacteria[J].Proceedings of the National Academy of Sciences,2016,113(51):14474-14476.
    [14]Shaw L J,Nicol G W,Smith Z,et al.Nitrosospira spp.can produce nitrous oxide via a nitrifier denitrification pathway[J].Environmental Microbiology,2006,8(2):214-222.
    [15]Shi X,Hu H W,Zhubarker X,et al.Nitrifier-induced denitrification is an important source of soil nitrous oxide and can be inhibited by a nitrification inhibitor 3,4-dimethylpyrazole phosphate(DMPP)[J].Environmental Microbiology,2017,19(12):4851-4865.
    [16]Hink L,Nicol G W,Prosser J I.Archaea produce lower yields of N_2Othan bacteria during aerobic ammonia oxidation in soil[J].Environmental Microbiology,2017,19(12):4829-4837.
    [17]Baggs E M.A review of stable isotope techniques for N_2O source partitioning in soils:recent progress,remaining challenges and future considerations[J].Rapid Communications in Mass Spectrometry,2008,22(11):1664-1672.
    [18]Wrage N,Velthof G L,Beusichem M L V,et al.Role of nitrifier denitrification in the production of nitrous oxide[J].Soil Biology&Biochemistry,2001,33(12):1723-1732.
    [19]Davidson E A.Pulses of nitric oxide and nitrous oxide flux following wetting of dry soil:An assessment of probable sources and importance relative to annual fluxes[J].Ecological Bulletins,1992,42(42):149-155.
    [20]Chen G,Cao X,Song C,et al.Adverse Effects of Ammonia on Nitrification Process:the Case of Chinese Shallow Freshwater Lakes[J].Water,Air&Soil Pollution,2010,210(1-4):297-306.
    [21]Bachand P A M,Horne A J.Denitrification in constructed free-water surface wetlands:II.Effects of vegetation and temperature[J].Ecological Engineering,1999,14(1/2):17-32.
    [22]Zeng J,Zhao D,Yu Z,et al.Temperature Responses of AmmoniaOxidizing Prokaryotes in Freshwater Sediment Microcosms[J].Plos One,2014,9(6):e100653.
    [23]Stark J M.Modeling the temperature response of nitrification[J].Biogeochemistry,1996,35(3):433-445.
    [24]Christman G D,Cottrell M T,Popp B N,et al.Abundance,Diversity,and Activity of Ammonia-Oxidizing Prokaryotes in the Coastal Arctic Ocean in Summer and Winter[J].Applied&Environmental Microbiology,2011,77(6):2026-2034.
    [25]杜秀英,竺乃恺,夏希娟,等.微宇宙理论及其在生态毒理学研究中的应用[J].生态学报,2001,21(10):1726-1733.Du X,Zhu N,Xia X,et al.The theory of microcosm and its application in ecotoxicology[J].Acta Ecologica Sinica,2001,21(10):1726-1733.
    [26]黄伟,朱旭宇,曾江宁,等.氮磷比对东海浮游植物群落生长影响的微宇宙实验[J].环境科学,2012,33(6):1832-1838.Huang W,Zhu X,Zeng J,et al.Microcosm Experiments on the influence of different N/P ratios on phytoplankton community growth in the East China Sea.Environmental Science,2012,33(6):1832-1838.
    [27]国家环境保护总局.水和废水监测分析方法[M].北京:中国环境科学出版社,2002:236-284.National Environmental Bureau.Methods for the analysis of water and wastewater.Chinese Environmental Science Press,Beijing,2002:236-284.
    [28]邢丽贞,郑德瑞,孔进,等.高氨氮废水短程硝化过程中N_2O释放试验研究[J].环境科学学报,2016,36(4):1260-1265.Xing L,Zheng D,Kong J,et al.N_2O emission during short-cut nitrification of high ammonium containing wastewater[J].Acta Scientiae Circumstantiae,2016,36(4):1260-1265.
    [29]Peng Y,Liu L,Jiang L,et al.The roles of cyanobacterial bloom in nitrogen removal[J].Science of the Total Environment,2017,609:297-303.
    [30]Arhonditsis G B,Stow C A,Steinberg L J,et al.Exploring ecological patterns with structural equation modeling and Bayesian analysis[J].Ecological Modelling,2006,192(3):385-409.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700