用户名: 密码: 验证码:
万峰湖水库回水区二氧化碳分压及扩散通量特征时空变化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Temporal and spatial variation of carbon dioxide partial pressure and exchange flux characteristics in the backwater area of Wanfeng Lake Reservoir
  • 作者:赵梦 ; 焦树林 ; 梁虹 ; 曹玉平 ; 赵宗权 ; 张倩 ; 袁热林
  • 英文作者:ZHAO Meng;JIAO Shulin;LIANG Hong;CAO Yuping;ZHAO Zongquan;ZHANG Qian;YUAN Relin;School of Geography and Environmental Science, Guizhou Normal University;Key Laboratory of Remote Sensing Application on Mountain Resources and Environment in Guizhou province;
  • 关键词:pCO_2 ; CO_2扩散通量 ; 水体理化参数 ; 回水区 ; 万峰湖水库
  • 英文关键词:partial pressure of CO_2;;CO_2 diffusion flux;;physical and chemical parameters of water;;backwater area;;Wanfenghu Reservoir
  • 中文刊名:环境化学
  • 英文刊名:Environmental Chemistry
  • 机构:贵州师范大学地理与环境科学学院;贵州省山地资源与环境遥感应用重点实验室;
  • 出版日期:2019-06-05 10:22
  • 出版单位:环境化学
  • 年:2019
  • 期:06
  • 基金:贵州省国内一流学科建设项目(黔教科研发[2017]85号);; 国家自然科学基金(41263011)资助~~
  • 语种:中文;
  • 页:105-115
  • 页数:11
  • CN:11-1844/X
  • ISSN:0254-6108
  • 分类号:X524
摘要
为了解喀斯特高原水库回水区丰枯水期水体二氧化碳分压变化规律及二氧化碳扩散通量特征,本文以云贵高原喀斯特水库——万峰湖为例,于2016年9月和2017年2月对该水库回水区水体表层进行走航监测和采样,利用水质参数仪现场测定水体参数,其余水体参数于实验室做进一步测定分析,pCO_2通过水化学平衡原理和亨利定律计算得到.结果表明,丰水期回水区表层pCO_2变化范围为124.84—374.06 Pa,均值为219.580 Pa;枯水期回水区表层pCO_2变化范围为210.19—371.53 Pa,均值为290.607 Pa,丰水期pCO_2值小于枯水期.相关性分析得出,枯水期pCO_2与T(温度)呈负相关,且pCO_2与Cond(电导率)和TDS(总溶解固体物含量)呈正相关.而丰枯水期pH与pCO_2都呈显著负相关.丰水期和枯水期pCO_2均为过饱和状态,表现为大气CO_2的源(大气pCO_2值为40.63 Pa).通过计算得出该研究区CO_2扩散通量(F)丰枯水期分别为49.27—193.82 mmol·m~(-2)·d~(-1)、54.02—102.83 mmol·m~(-2)·d~(-1),平均通量为104.998 mmol·m~(-2)·d~(-1)和76.822 mmol·m~(-2)·d~(-1).与世界其他水库相比,库区水体丰枯水期CO_2扩散通量低于热带地区,普遍高于亚热带、温带地区.
        In order to understand the variation of carbon dioxide partial pressure and the diffusion flux of carbon dioxide water in the backwater area of the karst plateau reservoir in wet and dry season, this paper took the Yunnan-Guizhou Plateau Karst Reservoir-Wanfeng Lake as an example. And the surface of the water body in the backwater area of this reservoir was monitored and sampled in September 2016 and February 2017. Then, the water parameters were detected on site by using the water quality parameter instrument. Other remaining water parameters were further measured and analyzed in the laboratory,and pCO_2 was calculated by the principle of water chemical equilibrium and Henry′s law. The results showed:(1) the variation range of the surface pCO_2 in wet season was 124.84—374.06 Pa with the average value of 219.580 Pa.(2) the variation range of the surface pCO_2 in dry season was 210.19—371.53 Pa with the mean value of 290.607 Pa, and the pCO_2 value during the wet season was lower than the dry season. Correlation analysis showed:(1) pCO_2 was negatively correlated with temperature(T) during the dry season, and pCO_2 was positively correlated with conductivity(Cond) and total dissolved solids content(TDS).(2) There was a strong negative correlation between pH and pCO_2 in the wet and dry season. The pCO_2 in the wet and dry period was supersaturated, which was expressed as the source of atmospheric CO_2(atmospheric pCO_2 value is 40.63 Pa).The calculation results showed that the CO_2 diffusion flux(F) in the study area was 49.27—193.82 mmol·m~(-2)·d~(-1) with the average flux of 104.998 mmol·m~(-2)·d~(-1).In the dry season, the diffusion flux of CO_2 was 54.02—102.83 mmol·m~(-2)·d~(-1) with average diffusive flux of 76.822 mmol·m~(-2)·d~(-1). Compared with other reservoirs in the world, the CO_2 emission flux in the abundance and dry season of the reservoir area was lower than that in the tropics, which was generally higher than that in the subtropical and temperate regions.
引文
[1] 傅家楠,操满,邓兵,等.三峡库区高水位运行期典型干支流水体CO2分压及其水面通量特征[J].地球与环境,2016,44(1):64-72.FU J N,CAO M,DENG B,et al.Partial pressure and diffusion flux of dissolved carbon dioxide in typical mainstream and tributaries of the Three Gorges Reservoir during high water level period[J].Earth And Environment,2016,44(1):64-72 (in Chinese).
    [2] 向正怡.温室效应与全球气候变暖[J].中国高新区,2018(3):117.XIANG Z Y.Greenhouse effect and global warming [J].China High-tech Zone,2018 (3):117 (in Chinese).
    [3] 张永香,巢清尘,黄磊.全球气候治理对中国中长期发展的影响分析及未来建议[J].沙漠与绿洲气象,2018,12(1):1-6.ZHANG Y X,CHAO Q C,HUANG L.The impact of global climate governance on China′s medium and long-term development and future suggestions[J].Desert and Oasis Meteorology,2018,12(1):1-6 (in Chinese).
    [4] 焦树林,刘丽,孙婷,等.三岔河流域水文特征与化学风化碳汇效应[J].地理研究,2013,32(6):1025-1032.JIAO S L,LIU L,SUN T,et al.Hydrological characteristics and the atmospheric carbon sink in the chemical weathering processes of the Sanchahe watershed[J].Geographical Research,2013,32(6):1025-1032 (in Chinese).
    [5] 焦树林,刘昆,高全洲.西江河口段秋季表层水体CO2分压的变化特征[J].环境科学学报,2008,28(2):356-361.JIAO S L,LIU K,GAO Q Z.Variation of pCO2 in the surface water along the waterway of the Xijiang River inner estuary in fall[J].Acta Scientiae Circumstantiae,2008,28(2):356-361 (in Chinese).
    [6] 高全洲,沈承德.河流碳通量与陆地侵蚀研究[J].地球科学进展,1998,13(4):52-58.GAO Q Z,SHEN C D.Riverine carbon flux and continental erosion[J].Advance In Earth Sciences,1998,13(4):52-58 (in Chinese).
    [7] LUDWIG W,PROBST J L,KEMPE S.Predicting the oceanic input of organic carbon by continental erosion[J].Global Biogeochemical Cycles,1996,10(1):23-41.
    [8] RICHEY J E,MELACK J K,AUFDENKAMPE A K,et al.Outgassing from Amazonian rivers and wetland as a large tropical source of atmosphferic CO2[J].Nature,2002,416(6881):617-620.
    [9] 张龙军,徐雪梅,温志超.秋季黄河pCO2控制因素及水-气界面通量[J].水科学进展,2009,20(2):227-235.ZHANG L J,XU X M,WEN Z C.Control factors of pCO2 and CO2 degassing fluxes from the Yellow River in autumn [J].Advances In Water Science,2009,20(02):227-235 (in Chinese).
    [10] 中华人民共和国国家统计局.2016.中国统计年鉴[OL].北京,中国统计出版社.2018.9,Http://www.mwr.gov.cn /zwzc/hygbNational Bureau of Statistics of the People′s Republic of China.2016.China Statistical Yearbook [OL].Beijing,China Statistics Press.2018.9,Http://www.Mwr.Gov.Cn /zwzc/hygb (in Chinese).
    [11] 汪福顺,王宝利,吴学谦,等.中国南方河道型水库CO2释放研究[J].矿物岩石地球化学通报,2017,36(1):40-471.WANG F S,WANG B L,WU X Q,et al.CO2 emission from the Wan′an Reservoir—run-of-the-river reservoir in southern China[J].Bulletin of Mineralogy,Petrology and Geochemistry,2017,36(1):40-471 (in Chinese).
    [12] 焦树林,高全洲,刘昆.西江磨刀门水道枯季咸淡水混合特征和二氧化碳分压分布[J].海洋学报(中文版),2009,31(6):40-47.JIAO S L,GAO Q Z,LIU K.Salt freshwater mixing characteristics and the variations of the partial pressure of carbon dioxide along the Modao Gate waterway in the Xijiang River in China in drought season[J].Acta Oceanologica Sinica,2009,31(6):40-47 (in Chinese).
    [13] 唐文魁,高全洲.河口二氧化碳水—气交换研究进展[J].地球科学进展,2013,28(9):1007-1014.TANG W K,GAO Q Z.Research advance in air-water CO2 exchange of estuaries[J].Advances in Earth Science,2013,28(9):1007-1014 (in Chinese).
    [14] 王仕禄,万国江,刘丛强,等.云贵高原湖泊CO2的地球化学变化及其大气CO2源汇效应[J].第四纪研究,2003,46(5):581.WANG S L,WANG G J,LIU C Q,et al.The geochemical changes of CO2 in the lakes of the Yunnan-Guizhou plateau and its atmospheric CO2 source and sink effects[J].Quaternary Sciences,2003,46(5):581 (in Chinese).
    [15] LOUIS V L S,KELLY C A,éRIC DUCHEMIN,et al.Reservoir surfaces as sources of greenhouse gases to the atmosphere:A global estimate[J].BioScience,2000,50(9):766-775.
    [16] MAKINEN K,KHAN S.Policy considerations for greenhouse gas emissions from freshwater reservoirs [J].Water Alternatives,2010,3(2):91-105.
    [17] 曹玉平,袁热林,焦树林,等.喀斯特深水水库干流及支流夏季二氧化碳分压及扩散通量[J].环境科学学报,2018,38(2):780-787.CAO Y P,YUAN R L,JIAO S L,et al.Partial pressure of carbon dioxide and diffusion fluxes in mainstream and tributary of karst deeply reservoir in summer[J].Acta Scientiae Circumstantiae,2018,38(2):780-787 (in Chinese).
    [18] 滕明德,迟峰,高庚申.万峰湖总有机碳空间分布特征[J].中国环境监测,2014,30(2):35-39.TENG M D,CHI F,GAO G S.Spatial characteristics of total organic carbon in Wanfeng Reservoir[J].Environmental Monitoring in China,2014,30(2):35-39 (in Chinese).
    [19] 李秋华,商立海,高廷进,等.喀斯特高原深水水库—万峰湖富营养化特征分析[J].生态科学,2013,32(2):194-199.LI Q H,SHANG L H,GAO T J,et al.Eutrophication characteristics of a karst plateau deep-water Wanfeng Reservoir[J].Ecological Science,2013,32(2):194-199 (in Chinese).
    [20] 邱华北,商立海,李秋华,等.水体热分层对万峰湖水环境的影响[J].生态学杂志,2011,30(5):1039-1044.QIU H B,SHANG L H,LI Q H,et al.Impacts of seasonal thermal stratification on the water environment of Wanfeng Lake[J].Chinese Journal of Ecolog,2011,30(5):1039-1044 (in Chinese).
    [21] 王振芳,张连明.水库回水淹没浸没范围的确定[J].青海环境,1997,14(3):132-135.WANG Z F,ZHANG L M.Determination of submerged immersion range of reservoir backwater[J].Journal of Qinghai Environment,1997,14(3):132-135 (in Chinese).
    [22] 钱莉莉,贺中华,梁虹,等.基于降水Z指数的贵州省农业干旱时空演化特征[J].贵州师范大学学报(自然科学版),2019,37(1):10-14.QIAN L L,HE Z H,LIANG H,et al.Spatial-temporal evolution characteristics of agricultural drought based on precipitation Z index in Guizhou[J].Journal of Guizhou Normal University(Natural Sciences),2019,37(1):10-14(in Chinese).
    [23] 刘泽钧,包亚军.天生桥一级水电站大坝运行管理[J].贵州水力发电,2004,19(4):45-47,67.LIU Z Z,BAO Y J.Dam operation management of Tianshengqiao Hydropower Station[J].Guizhou Water Power,2004,19(4):45-47,67 (in Chinese).
    [24] 郭燕鸿.万峰湖水环境质量调查及分析[J].贵州工业大学学报(自然科学版),2006,47(5):28-32.GUO Y H.Water environment quality investigation and analysis of Wan feng Lake[J].Journal of Guizhou University of Technology (Natural Science Edition),2006,47(5):28-32 (in Chinese).
    [25] 喻元秀,刘丛强,汪福顺,等.洪家渡水库溶解二氧化碳分压的时空分布特征及其扩散通量[J].生态学杂志,2008,27(7):1193-1199.YU Y X,LIU C Q,WANG F S,et al.Spatio temporal characteristics and diffusion flux of partial pressure of dissolved carbon dioxide (pCO2) in Hongjiadu reservoir[J].Chinese Journal of Ecology,2008,27(7):1193-1199 (in Chinese).
    [26] SOUMIS N,CANUEL R,LUCOTTE M.Evaluation of two current approaches for the measurement of carbon dioxide diffusive fluxes from lentic ecosystems[J].Environmental Science & Technology,2008,42(8):2964-2969.
    [27] 张永领,杨小林,张东.小浪底水库影响下的黄河花园口站和小浪底站pCO2特征及扩散通量[J].环境科学,2015,36(1):40-48.ZHANG Y L,YANG X L,ZHANG D.Partial pressure of CO2 and CO2 degassing fluxes of Huayuankou and Xiaolangdi station affected by Xiaolangdi Reservoir[J].Environmental Science,2015,36(1):40-48 (in Chinese).
    [28] WANNINKHOF R.Relationship between gas exchange and wind speed over the ocean[J].Journal of Geophysical Research,1992,97 (C5):7373-7381.
    [29] WEISS R F.Carbon dioxide in water and seawater:The solubility of a non-ideal gas[J].Marine Chemistry,1974,3(2):203-215.
    [30] JONSSON A,KARLSSON J,JANSSON M.Sources of carbon dioxide supersaturation in Clearwater and Humic Lakes in northern Sweden[J].Ecosystems,2003,6(3):224-235.
    [31] BILLETT M F,GARNETT M H,HARVEY F.UK peatland streams release old carbon dioxide to the atmosphere and young dissolved organic carbon to rivers[J].Geophysical Research Letters,2007,34(23):1-6.
    [32] SCOTT E M,SOUL B Y.Stable isotope analysis reveals Lower-Order River dissolved inorganic carbon pools are highly dynamic[J].Environmental Science & Technology,2007,41(17):6156-6162.
    [33] 丁建平,程静,杨建明.溶解性气体对开式循环凝汽器运行特性的影响[J].热力透平,2004,33(1):41-45.DING J P,CHENG J,YANG J M.Effects of dissolved gas on operation characteristic of condenser with once-through cooling water system[J].Thermal Turbine,2004,33(1):41-45 (in Chinese).
    [34] 叶丽菲.新丰江水库二氧化碳分压及其通量[D].广州:中山大学,2014.YE L F.The partial pressure and flux of CO2 in the Xinfengjiang Reservoir[D].Guangzhou:Zhongshan University,2014 (in Chinese).
    [35] 李丽,蒲俊兵,李建鸿,等.亚热带典型喀斯特溪流水气界面CO2扩散通量变化过程及其环境影响[J].环境科学,2016,37 (7):2487-2495.LI L,PU J B,LI J H,et al.Variations of CO2 exchange fluxes across water-air interface and environmental meaning in a surface stream in subtropical Karst area,SW China[J].Environmental Science,2016,37 (7):2487-2495 (in Chinese).
    [36] 李双,王雨春,操满,等.三峡库区库中干流及支流水体夏季二氧化碳分压及扩散通量[J].环境科学,2014,35(3):885-891.LI S,WANG Y C,CAO M,et al.Partial pressure and diffusion flux of dissolved carbon dioxide in the mainstream and tributary of the central Three Gorges Reservoir in summer[J].Environmental Science,2014,35(3):885-891 (in Chinese).
    [37] GUERIN F,ABRIL G,DE JUNET A,et al.Anaerobic decomposition of troical soils and plant material implication for the CO2 and CH4 budget of the Peyiy Sant reservoir [J].Applied Geochemistry,2008,23:2272-2283.
    [38] YAO G,GAO Q,WANG Z,et al.Dynamics of CO2 partial pressure and CO2 outgassing in the lower reaches of the Xijiang River,asubtropical monsoon river in China [J].Science of the Total Environment,2007,376(l-3):255-266.
    [39] SANTOSA MA,ROSA L P,SIKAR B,et al.Gross greenhouse gasfluxes from hydro-power reservoir compared to thermo-power plants[J].Energy Policy,2006,34(4):481-488.
    [40] WANG F,WANG B,LIU C Q,et al.Carbon dioxide emission from surface water in cascade reservoirs-river system on the Maotiao River,southwest of China[J].Atmospheric Environment,2011,45(23):3827-3834.
    [41] 梅航远,汪福顺,姚臣湛,等.万安水库春季二氧化碳分压的分布规律研究 [J].环境科学,2011,32 (l):58-63.MEI H Y,WANG F S,YAO C C,et al.Diffusion flux of partial pressure of dissolved carbon dioxide in Wan′an Reservoir in spring[J].Environmental Science,2011,32 (l):58-63 (in Chinese).
    [42] 姚臣湛,汪福顺,吴以赢,等.新安江水库水体春季二氧化碳分压的分布规律研究[J].地球环境学报,2010,1(2):150-156.YAO C C,WANG F S,Wu Y Y,et al.The vernal distrtibution of dissolved carbon dioxide (pCO2) in the Xin′anjiang reservoir[J].Journal of Earth Environment,2010,1(2):150-156 (in Chinese).
    [43] 郭劲松,蒋滔,李哲,等.三峡水库澎溪河流域高阳回水区夏季水体CO2分压日变化特性[J].湖泊科学,2012,24(2):190-196.GUO J S,JIANG T,LI Z,et al.Diurnal variation characteristics of pCO2 in the summer water column of Gaoyang backwater area in Pengxi River,Three Gorges Reservoir[J].Journal of Lake Sciences,2012,24(2):190-196 (in Chinese).
    [44] 刘丛强.生物地球化学过程与地表物质循环一西南喀斯特流域侵蚀与生源要素循环[M].北京:科学出版社,2007.LIU C Q.Biogeochemical process and surface material circulation-southwest Karst basin erosion and source element cycle[M].Beijing:Science Press,2007 (in Chinese).
    [45] 王仕禄,万国江,刘丛强,等.云贵高原湖泊CO2的地球化学变化及其大气CO2源汇效应[J].第四纪研究,2003,46(5):581.WANG S L,WANG G J,LIU C Q,et al.The geochemical changes of CO2 in the lakes of the Yunnan-Guizhou plateau and its atmospheric CO2 source and sink effects[J].Quaternary Sciences,2003,46(5):581 (in Chinese).
    [46] SOUMIS N,DUCHEMIN E,CANUEL R,et al.Greenhouses gas emissions from reservoirs of the western United States[J].Global Biogeochemical Cycles,2004,18(3):1-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700