用户名: 密码: 验证码:
基于PDMS/Ppy摩擦气体传感阵列的自供电式气体传感器用于室温实时监控尾气(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A self-powered gas sensor based on PDMS/Ppy triboelectric-gas-sensing arrays for the real-time monitoring of automotive exhaust gas at room temperature
  • 作者:何昊轩 ; 张梦洋 ; 赵天铭 ; 曾辉 ; 邢丽丽 ; 薛欣宇
  • 英文作者:Haoxuan He;Mengyang Zhang;Tianming Zhao;Hui Zeng;Lili Xing;Xinyu Xue;School of Physics, University of Electronic Science and Technology of China;College of Sciences, Northeastern University;
  • 英文关键词:self-powered;;gas sensing;;triboelectrification;;automotive exhaust gas;;coupling effect
  • 中文刊名:Science China Materials
  • 英文刊名:中国科学:材料科学(英文版)
  • 机构:School of Physics, University of Electronic Science and Technology of China;College of Sciences, Northeastern University;
  • 出版日期:2019-06-24 10:19
  • 出版单位:Science China Materials
  • 年:2019
  • 期:10
  • 基金:supported by the National Natural Science Foundation of China (11674048);; the Fundamental Research Funds for the Central Universities (N170505001 and N160502002);; the Program for Shenyang Youth Science and Technology Innovation Talents (RC170269)
  • 语种:英文;
  • 页:71-82
  • 页数:12
  • CN:10-1236/TB
  • ISSN:2095-8226
  • 分类号:X851;TP212
摘要
本文提出了一种用于汽车尾气实时监测的新型自供电式气体传感器.这种管形器件由聚二甲基硅氧烷/聚吡咯(PDMS/Ppy)摩擦-气体传感单元阵列组成.摩擦-气体传感单元可以直接将气流的机械能转换为电能并输出摩擦电流.输出电流的信号强度取决于气流中目标化学气体(CO、NH_3、NO)的种类和浓度,因此这种输出电流可以同时作为传感信号.这种自供电气体传感器将纳米发电机和气体传感器集成于单一器件,在一个物理过程中同时实现摩擦发电和气体传感,进而实现了自供电式气体传感器.该装置可固定在汽车排气管处,无需外接电源即可对废气进行实时分析.这一工作为汽车尾气监测系统的发展开辟了新的研究方向,将在大气污染的检测方面起到重要作用.
        A new self-powered active gas sensor for realtime monitoring of automotive exhaust gas was devised.The pipe-shaped device was fabricated from polydimethylsiloxane/polypyrrole(PDMS/Ppy)triboelectric gas-sensing unit arrays.The gas-sensing units can actively convert the mechanical energy of gas flow into a triboelectric current.The output current signal depends on the species and concentrations of the target chemical gases(CO,NH_3,NO)in the gas flow,and thus can be used as a sensing signal.The device consists of seven gas-sensing units with different Ppy derivatives.As the different sensing units respond to the gases in different ways,the device can differentiate between gas species.The working mechanism is attributed to the coupling effect between the triboelectric effect of PDMS/Ppy and the gas-sensing properties of Ppy.The device can be installed in the tailpipe of an automobile,and can thus analyze the exhaust gas in real time without the need for any external electrical power.The results of the present study spur a new research direction for the development of automotive exhaust gas monitoring systems,thus playing an important role in the detection of air pollution.
引文
1 Wales DJ,Grand J,Ting VP,et al.Gas sensing using porous materials for automotive applications.Chem Soc Rev,2015,44:4290-4321
    2 Twigg MV.Progress and future challenges in controlling automotive exhaust gas emissions.Appl Catal B-Environ,2007,70:2-15
    3 Fleming WJ.New automotive sensors-a review.IEEE Senss J,2008,8:1900-1921
    4 Liu X,Cheng S,Liu H,et al.A survey on gas sensing technology.Sensors,2012,12:9635-9665
    5 Fang X,Zong B,Mao S.Metal-organic framework-based sensors for environmental contaminant sensing.Nano-Micro Lett,2018,10:64
    6 Wang T,Huang D,Yang Z,et al.A review on graphene-based gas/vapor sensors with unique properties and potential applications.Nano-Micro Lett,2016,8:95-119
    7 Zhong T,Guan H,Dai Y,et al.A self-powered flexibly-arranged gas monitoring system with evaporating rainwater as fuel for building atmosphere big data.Nano Energy,2019,60:52-60
    8 Fu Y,He H,Liu Y,et al.Self-powered,stretchable,fiber-based electronic-skin for actively detecting human motion and environmental atmosphere based on a triboelectrification/gas-sensing coupling effect.J Mater Chem C,2017,5:1231-1239
    9 Zhang D,Liu J,Jiang C,et al.Quantitative detection of formaldehyde and ammonia gas via metal oxide-modified graphenebased sensor array combining with neural network model.Sensor Actuat B-Chem,2017,240:55-65
    10 He H,Dong C,Fu Y,et al.Self-powered smelling electronic-skin based on the piezo-gas-sensor matrix for real-time monitoring the mining environment.Sensor Actuat B-Chem,2018,267:392-402
    11 Liang Q,Li D,Gao S,et al.Room-temperature NH3sensors with high sensitivity and short response/recovery times.Chin Sci Bull,2014,59:447-451
    12 Liu DP,Chu YL,Wu XH,et al.Side-chain effect of organic semiconductors in OFET-based chemical sensors.Sci China Mater,2017,60:977-984
    13 Timmer B,Olthuis W,Berg A.Ammonia sensors and their applications-a review.Sensor Actuat B-Chem,2005,107:666-677
    14 Afzal A,Cioffi N,Sabbatini L,et al.NOxsensors based on semiconducting metal oxide nanostructures:progress and perspectives.Sensor Actuat B-Chem,2012,171-172:25-42
    15 Li S,Wang M,Li C,et al.CuxO self-assembled mesoporous microspheres with effective surface oxygen vacancy and their room temperature NO2gas sensing performance.Sci China Mater,2018,61:1085-1094
    16 Xue X,Deng P,Yuan S,et al.CuO/PVDF nanocomposite anode for a piezo-driven self-charging lithium battery.Energy Environ Sci,2013,6:2615-2620
    17 Guan H,Zhong T,He H,et al.A self-powered wearable sweatevaporation-biosensing analyzer for building sports big data.Nano Energy,2019,59:754-761
    18 Duan J,Liang X,Guo J,et al.Ultra-stretchable and force-sensitive hydrogels reinforced with chitosan microspheres embedded in polymer networks.Adv Mater,2016,28:8037-8044
    19 He H,Fu Y,Zhao T,et al.All-solid-state flexible self-charging power cell basing on piezo-electrolyte for harvesting/storing bodymotion energy and powering wearable electronics.Nano Energy,2017,39:590-600
    20 Huang Y,Zhu M,Huang Y,et al.Multifunctional energy storage and conversion devices.Adv Mater,2016,28:8344-8364
    21 Zhao K,Wang Y,Han L,et al.Nanogenerator-based self-charging energy storage devices.Nano-Micro Lett,2019,11:19
    22 Shao H,Cheng P,Chen R,et al.Triboelectric-electromagnetic hybrid generator for harvesting blue energy.Nano-Micro Lett,2018,10:54
    23 Wang K,Zhang X,Sun X,et al.Conducting polymer hydrogel materials for high-performance flexible solid-state supercapacitors.Sci China Mater,2016,59:412-420
    24 Zhang X,Zhang H,Lin Z,et al.Recent advances and challenges of stretchable supercapacitors based on carbon materials.Sci China Mater,2016,59:475-494
    25 Uddin ASMI,Kumar PS,Hassan K,et al.Enhanced sensing performance of bimetallic Al/Ag-CNF network and porous PDMS-based triboelectric acetylene gas sensors in a high humidity atmosphere.Sensor Actuat B-Chem,2018,258:857-869
    26 Uddin ASMI,Chung GS.A self-powered active hydrogen sensor based on a high-performance triboelectric nanogenerator using a wrinkle-micropatterned PDMS film.RSC Adv,2016,6:63030-63036
    27 Lin ZH,Zhu G,Zhou YS,et al.A self-powered triboelectric nanosensor for mercury ion detection.Angew Chem Int Ed,2013,52:5065-5069
    28 Uddin ASMI,Yaqoob U,Chung GS.Improving the working efficiency of a triboelectric nanogenerator by the semimetallic PED-OT:PSS hole transport layer and its application in self-powered active acetylene gas sensing.ACS Appl Mater Interfaces,2016,8:30079-30089
    29 Wen Z,Chen J,Yeh MH,et al.Blow-driven triboelectric nanogenerator as an active alcohol breath analyzer.Nano Energy,2015,16:38-46
    30 Wang Q,Jian M,Wang C,et al.Carbonized silk nanofiber membrane for transparent and sensitive electronic skin.Adv Funct Mater,2017,27:1605657
    31 Fu Y,He H,Zhao T,et al.A self-powered breath analyzer based on PANI/PVDF piezo-gas-sensing arrays for potential diagnostics application.Nano-Micro Lett,2018,10:76
    32 Yang Y,Zhang H,Chen J,et al.Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system.ACS Nano,2013,7:7342-7351
    33 Kanfer G,Courthéoux T,Peterka M,et al.Mitotic redistribution of the mitochondrial network by Miro and Cenp-F.Nat Commun,2015,6:8015
    34 Xue X,Fu Y,Wang Q,et al.Outputting olfactory bionic electric impulse by PANI/PTFE/PANI sandwich nanostructures and their application as flexible,smelling electronic skin.Adv Funct Mater,2016,26:3128-3138
    35 Fu Y,Zhang M,Dai Y,et al.A self-powered brain multi-perception receptor for sensory-substitution application.Nano Energy,2018,44:43-52
    36 Zhang W,Zhang L,Gao H,et al.Self-powered implantable skinlike glucometer for real-time detection of blood glucose level in vivo.Nano-Micro Lett,2018,10:32
    37 Dai Y,Fu Y,Zeng H,et al.A self-powered brain-linked vision electronic-skin based on triboelectric-photodetecing pixeladdressable matrix for visual-image recognition and behavior intervention.Adv Funct Mater,2018,28:1800275
    38 Han W,Zhang L,He H,et al.Self-powered vision electronic-skin basing on piezo-photodetecting Ppy/PVDF pixel-patterned matrix for mimicking vision.Nanotechnology,2018,29:255501
    39 Bose S,Kuila T,Uddin ME,et al.In-situ synthesis and characterization of electrically conductive polypyrrole/graphene nanocomposites.Polymer,2010,51:5921-5928
    40 Wan S,Guo J,Kim J,et al.A photoconductive covalent organic framework:Self-condensed arene cubes composed of eclipsed 2Dpolypyrene sheets for photocurrent generation.Angew Chem Int Ed,2009,48:5439-5442
    41 Du Y,Shen SZ,Cai K,et al.Research progress on polymerinorganic thermoelectric nanocomposite materials.Prog Polymer Sci,2012,37:820-841
    42 Zhang L,Du W,Nautiyal A,et al.Recent progress on nanostructured conducting polymers and composites:synthesis,application and future aspects.Sci China Mater,2018,61:303-352
    43 Niu S,Wang S,Lin L,et al.Theoretical study of contact-mode triboelectric nanogenerators as an effective power source.Energy Environ Sci,2013,6:3576-3583
    44 He H,Zeng H,Fu Y,et al.A self-powered electronic-skin for realtime perspiration analysis and application in motion state monitoring.J Mater Chem C,2018,6:9624-9630
    45 Wen Z,Shen Q,Sun X.Nanogenerators for self-powered gas sensing.Nano-Micro Lett,2017,9:45
    46 Khan U,Kim SW.Triboelectric nanogenerators for blue energy harvesting.ACS Nano,2016,10:6429-6432
    47 Zeng H,He H,Fu Y,et al.A self-powered brain-linked biosensing electronic-skin for actively tasting beverage and its potential application in artificial gustation.Nanoscale,2018,10:19987-19994
    48 Liu Y,Niu S,Wang ZL.Theory of tribotronics.Adv Electron Mater,2015,1:1500124
    49 Niu S,Liu Y,Chen X,et al.Theory of freestanding triboelectriclayer-based nanogenerators.Nano Energy,2015,12:760-774
    50 Bai H,Shi G.Gas sensors based on conducting polymers.Sensors,2007,7:267-307
    51 An K,Jeong S,Hwang H,et al.Enhanced sensitivity of a gas sensor incorporating single-walled carbon nanotube-polypyrrole nanocomposites.Adv Mater,2004,16:1005-1009
    52 Ameer Q,Adeloju SB.Polypyrrole-based electronic noses for environmental and industrial analysis.Sensor Actuat B-Chem,2005,106:541-552
    53 Lu CX,Han CB,Gu GQ,et al.Temperature effect on performance of triboelectric nanogenerator.Adv Eng Mater,2017,19:1700275
    54 Chang TH,Peng YW,Chen CH,et al.Protein-based contact electrification and its uses for mechanical energy harvesting and humidity detecting.Nano Energy,2016,21:238-246
    55 Wei G,Bi Y,Li X,et al.Self-powered hybrid flexible nanogenerator and its application in bionic micro aerial vehicles.Nano Energy,2018,54:10-16

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700