用户名: 密码: 验证码:
磷脂酶D参与冬小麦对干旱胁迫的响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Phospholipase D of Winter Wheat is Involved in Responses to Drought Stress
  • 作者:王雅静 ; 张欣莹 ; 黄桂荣 ; 封富 ; 钟秀丽
  • 英文作者:WANG Ya-jing;ZHANG Xin-ying;HUANG Gui-rong;FENG Fu;ZHONG Xiu-li;Institute of Environment and Sustainable Development in Agriculture,Chinese Academy of Agricultural Sciences/Key Laboratory of Dryland Agriculture,Ministry of Agriculture;
  • 关键词:磷脂酶D ; 干旱 ; 信号转导 ; 过氧化 ; 抗氧化系统 ; PLD
  • 英文关键词:Phospholipase D;;Drought;;Signal transduction;;Peroxidation;;Antioxidant enzyme;;PLD
  • 中文刊名:中国农业气象
  • 英文刊名:Chinese Journal of Agrometeorology
  • 机构:中国农业科学院农业环境与可持续发展研究所/农业部旱作节水农业重点实验室;
  • 出版日期:2019-04-19
  • 出版单位:中国农业气象
  • 年:2019
  • 期:04
  • 基金:“十三五”国家重点研发计划课题“化肥减施增效共性技术与评价研究(2017YFD0201702)”
  • 语种:中文;
  • 页:28-35
  • 页数:8
  • CN:11-1999/S
  • ISSN:1000-6362
  • 分类号:S512.11;S423
摘要
磷脂酶D(phospholipase D,PLD)通过水解细胞膜磷脂产生信使物质磷脂酸(PA),并介导多种激素与逆境的信号转导过程。为探讨PLD在参与干旱信号转导调控细胞膜稳定性方面的作用及其途径,采用在培养液中加入PEG-6000模拟干旱胁迫,用PLD抑制剂正丁醇(n-butanol,BA)抑制PLD产生PA,对比PEG+BA处理与PEG处理下小麦抗旱性、膜稳定性以及抗氧化酶类的变化。结果表明,与PEG处理相比,PEG+BA处理下,冬小麦幼苗叶片生长受抑制,净光合速率下降,光合非气孔限制作用增强,细胞膜离子渗漏率显著升高,膜脂过氧化产物丙二醛(malonaldehyde,MDA)升高,抗氧化酶POD活性下降,表明PLD参与干旱胁迫下过氧化物酶(peroxidase,POD)活性的调控。由此揭示出一条潜在的由PLD介导的干旱信号转导途径,即干旱胁迫—PLD激活—POD活性增强—保护膜脂过氧化损伤—提高细胞膜稳定性—植物抗旱性增强。
        Phospholipase D(PLD) mediate signaling processes of various hormones and adversities by hydrolyzing phospholipids in cellular membrane and producing phosphotidic acid(PA), a messenger. In order to investigate the roles and pathways of PLD in regulation of the stability of cellular membrane, PEG-6000 was adopted to mimic drought stress, and n-butabol(BA) was applied to inhibit PLD-derived PA. Drought resistance, stability of cellular membrane, antioxidant enzymes of wheat seedlings treated by PEG and PEG added BA were compared. The results showed that inhibition of PLD by BA induced slower seedling growth, lower net photosynthesis rate, higher non-stomatal limitation, higher membrane ion leakage and malonaldehyde(MDA), a peroxidation product, and lower POD activity. The results indicated that PLD played its role in regulating POD activity. Thus, a potential signal transduction pathway under drought stress mediated by PLD was explored: drought stress—activation of PLD—enhancement of POD—impairation of membrane lipids peroxidation damage—improvement of stability of cellular membrane—increasing drought resistance of plants.
引文
[1]Sui N,Li M,Meng Q,et al.Photosynthetic characteristics of a super high yield cultivar of winter wheat during late growth period[J].Agricultural Sciences in China,2010,9(3):346-354.
    [2]吕妍,王让会,蔡子颖.我国干旱半干旱地区气候变化及其影响[J].干旱区资源与环境,2009,(11):65-71.Lv Y,Wang R H,Cai Z Y.Climatic change and influence in arid and semi-arid area of China[J].Journal of Arid Land Resources and Environment,2009,(11):65-71.(in Chinese)
    [3]Lincolntaiz,Eduardozeiger.植物生理学[M].北京:科学出版社,2015:618.Lincolntaiz,Eduardozeiger.Plant physiology[M].Beijing:Science Press,2015:618.(in Chinese)
    [4]Urano D,Jones A M.Heterotrimeric G protein-coupled signaling in plants[M].Annual Review of Plant Biology,Merchant S S,2014:65,365-384.
    [5]Zheng S,Liu Y,Li B,et al.Phosphoinositide-specific phospholipase C9 is involved in the thermotolerance of Arabidopsis[J].Plant Journal,2012,69(4):689-700.
    [6]Kim Y J,Kim J E,Lee J H,et al.The Vr-PLC3 gene encodes a putative plasma membrane-localized phosphoinositidespecific phospholipase C whose expression is induced by abiotic stress in mung bean(Vigna radiata L.)[J].Febs Letters,2004,556(1-3):127-136.
    [7]Munnik T,Meijer H J,Ter Riet B,et al.Hyperosmotic stress stimulates phospholipase D activity and elevates the levels of phosphatidic acid and diacylglycerol pyrophosphate[J].Plant Journal,2000,22(2):147-154.
    [8]Wang X.Phospholipase D in hormonal and stress signaling[J].Current Opinion in Plant Biology,2002,5(5):408-414.
    [9]Hetherington A M,Woodward F I.The role of stomata in sensing and driving environmental change[J].Nature,2003,424(6951):901-908.
    [10]Wang X,Xu L,Zheng L.Cloning and expression of phosphatidylcholine-hydrolyzing phospholipase D from Ricinus communis L[J].Journal of Biological Chemistry,1994,269(32):20312-20317.
    [11]Sang Y M,Cui D C,Wang X M.Phospholipase D and phosphatidic acid-mediated generation of superoxide in Arabidopsis[J].Plant Physiology,2001,126(4):1449-1458.
    [12]Distefano A M,Scuffi D,Garcia-Mata C,et al.Phospholipase D delta is involved in nitric oxide-induced stomatal closure[J].Planta,2012,236(6):1899-1907.
    [13]Mishra G,Zhang W H,Deng F,et al.A bifurcating pathway directs abscisic acid effects on stomatal closure and opening in Arabidopsis[J].Science,2006,312(5771):264-266.
    [14]Guo L,Devaiah S P,Narasimhan R,et al.Cytosolic glyceraldehyde-3-phosphate dehydrogenases interact with phospholipase D delta to transduce hydrogen peroxide signals in the Arabidopsis response to stress[J].Plant Cell,2012,24(5):2200-2212.
    [15]Sang Y,Zheng S,Li W,et al.Regulation of plant water loss by manipulating the expression of phospholipase dalpha[J].Plant Journal,2001,28(2):135-144.
    [16]Li W Q,Li M Y,Zhang W H,et al.The plasma membranebound phospholipase D delta enhances freezing tolerance in Arabidopsis thaliana[J].Nature Biotechnology,2004,22(4):427-433.
    [17]Cruz-Ramirez A,Oropeza-Aburto A,Razo-Hernandez F,et al.Phospholipase DZ2 plays an important role in extraplastidic galactolipid biosynthesis and phosphate recycling in Arabidopsis roots[J].Proceedings of the National Academy of Sciences of the United States of America,2006,103(17):6765-6770.
    [18]Li M,Qin C,Welti R,et al.Double knockouts of phospholipases Dzeta1 and Dzeta2 in Arabidopsis affect root elongation during phosphate-limited growth but do not affect root hair patterning[J].Plant Physiology,2006,140(2):761-770.
    [19]Hong Y,Devaiah S P,Bahn S C,et al.Phospholipase D epsilon and phosphatidic acid enhance Arabidopsis nitrogen signaling and growth[J].Plant Journal,2009,58(3):376-387.
    [20]Liljenberg C,Kates M.Changes in lipid composition of oat root membranes as a function of water-deficit stress[J].Canadian Journal of Biochemistry and Cell Biology,1985,63(2):77-84.
    [21]Moller I M,Jensen P E,Hansson A.Oxidative modifications to cellular components in plants[J].Annual Review of Plant Biology,2007,58:459-581.
    [22]Gill S S,Tuteja N.Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J].Plant Physiology and Biochemistry,2010,48(12):909-930.
    [23]Turan O,Ekmekci Y.Activities of photosystem II and antioxidant enzymes in chickpea(Cicer arietinum L.)cultivars exposed to chilling temperatures[J].Acta Physiologiae Plantarum,2011,33(1):67-78.
    [24]Jiang M Y,Zhang J H.Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves[J].Journal of Experimental Botany,2002,53(379):2401-2410.
    [25]Zhang J,Kirkham M B.Drought-stress-induced changes in activities of superoxide dismutase,catalase,and peroxidase in wheat species[J].Plant and Cell Physiology,1994,35(5):785-791.
    [26]毛浩田,陈梦莹,吴楠,等.干旱胁迫对不同倍性小麦和八倍体小黑麦苗期光合能力与抗氧化系统的影响[J].麦类作物学报,2018,(10):1246-1254.Mao H T,Chen M Y,Wu N,et al.Effects of drought stress on photosynthetic capacity and antioxidant system in wheat with different ploidy levels and octoploid triticale at seedling stage[J].Journal of Triticeae Crops,2018,(10):1246-1254.(in Chinese)
    [27]Alexieva V,Sergiev I,Mapelli S,et al.The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat[J].Plant Cell and Environment,2001,24(12):1337-1344.
    [28]Devi R,Kaur N,Gupta A K.Potential of antioxidant enzymes in depicting drought tolerance of wheat(Triticum aestivum L.)[J].Indian Journal of Biochemistry&Biophysics,2012,49(4):257-265.
    [29]Barakat N A M.Oxidative stress markers and antioxidant potential of wheat treated with phytohormones under salinity stress[J].Journal of Stress Physiology&Biochemistry,2011,7(4):250-267.
    [30]Caverzan A,Casassola A,Brammer S P.Antioxidant responses of wheat plants under stress[J].Genetics and Molecular Biology,2016,39(1):1-6.
    [31]Hong Y,Zheng S,Wang X.Dual functions of phospholipase dalpha1 in plant response to drought[J].Molecular Plant,2008,1(2):262-269.
    [32]Cakmak I,Marschner H.Magnesium deficiency and high light intensity enhance activities of superoxide dismutase,ascorbate peroxidase,and glutathione reductase in bean leaves[J].Plant Physiology,1992,98(4):1222-1227.
    [33]张志良,瞿伟菁,李小方.植物生理学实验指导[M].北京:高等教育出版社,2009:298.Zhang Z L,Ju W J,Li X F.Plant physiology experiment instrument[M].Beijing:Higher Education Press,2009:298.(in Chinese)
    [34]孔祥生,易现锋.植物生理学实验技术[M].北京:中国农业出版社,2008:351.Kong X S,Yi X F.Plant physiology experimental technology[M].Beijing:China Agriculture Press,2008:351.(in Chinese)
    [35]Ghars M A,Richard L,Lefebvre-De Vos D,et al.Phospholipases C and D modulate proline accumulation in Thellungiella halophila/salsuginea differently according to the severity of salt or hyperosmotic stress[J].Plant and Cell Physiology,2012,53(1):183-192.
    [36]钟秀丽,崔德才,李玉中.磷脂酶D的细胞信号转导作用[J].植物生理与分子生物学学报,2005,31(5):451-460.Zhong X L,Cui D C,Li Y Z.The role of phospholipase D in cellular signaling[J].Journal of Plant Physiology and Molecular Biology,2005,31(5):451-460.(in Chinese)
    [37]Zhang W,Qin C,Zhao J,et al.Phospholipase D alpha1-derived phosphatidic acid interacts with ABI1 phosphatase2C and regulates abscisic acid signaling[J].Proc Natl Acad Sci U S A,2004,101(25):9508-9513.
    [38]Hong Y,Pan X,Welti R,et al.Phospholipase D alpha 3 is involved in the hyperosmotic response in Arabidopsis[J].Plant Cell,2008,20(3):803-816.
    [39]Zhang Q,Lin F,Mao T,et al.Phosphatidic acid regulates microtubule organization by interacting with MAP65-1 in response to salt stress in Arabidopsis[J].Plant Cell,2012,24(11):4555-4576.
    [40]Bargmann B O,Laxalt A M,ter Riet B,et al.Multiple PLDs required for high salinity and water deficit tolerance in plants[J].Plant and Cell Physiology,2009,50(1):78-89.
    [41]Othman A B,Ellouzi H,Planchais S,et al.Phospholipases Dζ1and Dζ2 have distinct roles in growth and antioxidant systems in Arabidopsis thaliana responding to salt stress[J].Planta,2017,246(4):721-735.
    [42]Katagiri T,Takahashi S,Shinozaki K.Involvement of a novel Arabidopsis phospholipase D,AtPLD delta,in dehydrationinducible accumulation of phosphatidic acid in stress signalling[J].Plant Journal,2001,26(6):595-605.
    [43]Li M,Welti R,Wang X.Quantitative profiling of Arabidopsis polar glycerolipids in response to phosphorus starvation.Roles of phospholipases D zeta 1 and D zeta 2 in phosphatidylcholine hydrolysis and digalactosyldiacylglycerol accumulation in phosphorus-starved plants[J].Plant Physiology,2006,142(2):750-761.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700