用户名: 密码: 验证码:
PAC对PDDA与一氯胺反应形成NDMA的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of PAC on NDMA Formation in the Reaction of Polydimethyldiallyl Ammonium Chloride and Monochloramine
  • 作者:范丽娟 ; 邓斌 ; 张跃军
  • 英文作者:FAN Lijuan;DENG Bin;ZHANG Yuejun;Department of Chemical Engineering, Nanjing University of Science and Technology;
  • 关键词:聚二甲基二烯丙基氯化铵(PDDA) ; 一氯胺 ; 消毒副产物 ; N-亚硝基二甲胺(NDMA) ; 聚合氯化铝(PAC) ; 影响
  • 英文关键词:polydimethyldiallyl ammonium chloride(PDDA);;monochloramine;;disinfection by-products;;N-Nitrosodimethylamine(NDMA);;polyaluminium chloride(PAC);;influence
  • 中文刊名:水处理技术
  • 英文刊名:Technology of Water Treatment
  • 机构:南京理工大学化工学院;
  • 出版日期:2019-09-10
  • 出版单位:水处理技术
  • 年:2019
  • 期:09
  • 基金:国家自然科学基金(21377054)
  • 语种:中文;
  • 页:83-88
  • 页数:6
  • CN:33-1127/P
  • ISSN:1000-3770
  • 分类号:X703
摘要
考察了聚合氯化铝(PAC)对聚二甲基二烯丙基氯化铵(PDDA)与一氯胺反应形成消毒副产物N-亚硝基二甲胺(NDMA)的影响。结果表明,在模拟微污染原水的氨氮含量条件下进行预氯氧化后,先加PAC后加PDDA、先加PDDA后加PAC、同时投加PAC和PDDA、投加PAC-PDDA这几种混凝剂投加方式测得NDMA生成质量浓度在30 ng/L左右,与未加PAC时生成NDMA的质量浓度22.80 ng/L相比,加入PAC后生成NDMA含量均稍有增加。各种投加方式下仅改变反应时间、温度、一氯胺或PDDA投加量与形成NDMA的量均不产生影响。在接近实际预氯氧化-复合混凝剂处理微污染原水的模式下,NDMA生成量与反应条件和投加PAC相关,但实质是受投加PAC引起体系pH改变的影响。
        The effect of polyaluminium chloride(PAC) on the reaction of polydimethyldiallylammonium chloride(PDDA) with mono chloramine to form the disinfection by-product N-nitrosodimethylamine(NDMA) was investigated. The results showed that pre-chlorination and coagulation were carried out by using simulated tiny-polluted raw water only concerning the ammonia nitrogen content, and the NDMA(contents) generated under various PAC adding methods were as follows: adding PAC first and then PDDA, adding PDDA first and then PAC, adding PAC and PDDA parallel at the same time,and adding PAC/PDDA composite, the mass concentration of generated NDMA was about 30 ng/L, compared with the adding method(22.80 ng/L)without adding PAC, the NDMA content generated in each of four adding methods increased slightly. The change of the reaction time, temperature or monochloramine dosage had no effect on the amount of NDMA production. In the mode of treating the micro-polluted raw water by using prechlorination and composite coagulants, the produced amount of NDMA were not only concerning to the reaction conditions, but also concerning to added PAC which caused the change of pH in solutions.
引文
[1]KRASNER S W,MITCH W A,MC CURRY D L,et al.Formation,precursors,control,and occurrence of nitrosamines in drinking water:A review[J].Water Research,2013,47(13):4433-4450.
    [2]US EPA.Integrrated risk information sevrice(IRIS)substanee file[R].1997.
    [3]BEI E,SHU Y,LI S,et al.Occurrence of nitrosamines and their precursors in drinking water systems around mainland China[J].Water Research,2016,98:168-175.
    [4]MITCH W A,SEDLAK D L.Formation of N-nitrosodimethylamine(NDMA)from dimethylamine during chlorination[J].Environmental Science&Technology,2002,36(4):588-595.
    [5]CHOI J,VALENTINER L.N-nitrosodimethylamineFormation by fr ee-chlorine-enhanced citrosation of dimethylamine[J].Environmental Science and Technology,2003,37(21):4871-4876.
    [6]WILCZAK A,ARDESHIR A,LAI H H,et al.Formation of NDMAin chloraminated water coagulated with DADMAC cationic polymer[J].Journal American Water Works Association,2003,95(9):94-106.
    [7]李潇潇.含PDMDAAC复合混凝剂的强化混凝脱浊效能及机制[D].南京:南京理工大学,2011.
    [8]张跃军,赵晓蕾,李潇潇.聚合氯化铝-聚二甲基二烯丙基氯化铵复合混凝剂及其制备与应用方法:CN101323473A[P].2008-12-17.
    [9]贾旭,张跃军.PDMDAAC合成工艺研究进展[J].精细化工,2008,25(10):1008-1015.
    [10]CHARROIS J WA,HrudeyS E.Breakpoint chlorination and free-chlorine contact time:Implications for drinking water N-nitrosodimethylamine concentrations[J].Water Research,2007,41(3):674-682.
    [11]PARK S H,WEI S,MIZAIKOFF B,et al.Degradation of aminebased water treatment polymers during chloramination as N-nitrosodimethylamine(NDMA)precursors[J].Environmental Science and Technology,2009,43(5):1360-1365.
    [12]PADHYE L,LUZINOVA Y,CHO M,et al.PolyDMDAAC and dimethylamine as precursors of N-nitrosodimethylamine during ozonation:reaction kinetics and mechanisms[J].Environmental Science and Technology,2011,45(4):4353-4359.
    [13]SANG H P,PADHYE L P,WANG P,et al.N-nitrosodimethylamine(NDMA)formation potential of amine-based water treatment polymers:Effects of in situ chloramination,breakpoint chlorination,and preoxidation[J].Journal of Hazardous Materials,2015,282(13):133-140.
    [14]钱玮玲,王正萍,赵晓蕾,等.消毒副产物N-亚硝基二甲胺的生成规律[J].精细化工,2016,33(4):461-466.
    [15]水质游离氯和总氯的测定N,N-二甲基-1,4-苯二胺滴定法:HJ586-2010[S].
    [16]钱伟玲.微污染原水强化混凝过程中消毒副产物N-亚硝基二甲胺的生成规律研究[D].南京:南京理工大学,2016.
    [17]代杏满.原水氯化消毒及混凝条件下氯胺和NDMA的生成特性研究[D].南京:南京理工大学,2016.
    [18]贺龘.PDMDAAC助凝PAC投加方式研究及机理分析[D].南京:南京理工大学,2012.
    [19]张满满.典型地域地表水源水氨氮等水质模型初步研究[D].南京:南京理工大学,2017.
    [20]李潇潇,张跃军,赵晓蕾,等.PAC/PDMDAAC复合混凝剂用于冬季太湖水强化混凝工艺中试放大研究[J].应用基础与工程科学学报,2016(1):157-167.
    [21]李潇潇.投加方式对PDM助凝PAC处理太湖原水效果的影响[J].西宁:中国精细化工协会第五届全国水处理化学品行业年会,2009:208-216.
    [22]蒋绍新,黄雪,袁秋红,等.预氯化对PDMDAAC形成消毒副产物NDMA的影响[J].环境工程学报,2017,11(8):4622-4626.
    [23]冯利,汤鸿霄.铝盐最佳混凝形态及最佳p H范围研究[J].环境化学,1998,17(2):163-168.
    [24]PRODROMOU K P.Formation of aluminum hydroxides as influenced by aluminum salts and bases[J].Clays and Clay Minerals,1995,43(1):111-115.
    [25]黄新丽.复合混凝剂PAC-PDMDAAC的混凝效果及机理研究[D].重庆:重庆大学,2012.
    [26]曾果,张永吉,叶河秀.不同氯与氨投加顺序及氯氨比下氯胺衰减与形态研究[OL].中国科技论文在线,http://www.paper.edu.cn/releasepaper/content/201202-107.
    [27]SCHREIBER I M,MITCH W A.Nitrosamine formation pathway revisited:the importance of chloramine speciation and dissolved oxygen[J].Environmental Science and Technology,2006,40(19):6007-6014.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700