用户名: 密码: 验证码:
基于钢板表面兰姆波驱动的油水分离实验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental Study on Lamb Waves Driven Oil-Water Separation on the Surface of Inclined Steel Substrate
  • 作者:姜浩 ; 梁威
  • 英文作者:JIANG Hao;LIANG Wei;Traffic and Transportation Engineering, Shanghai University of Engineering Science;School of Automotive Engineering, Shanghai University of Engineering Science;
  • 关键词:兰姆波 ; 油水分离 ; 单相换能器 ; 微流体
  • 英文关键词:Lamb wave;;oil-water separation;;single-phase transducer;;microfluid
  • 中文刊名:水处理技术
  • 英文刊名:Technology of Water Treatment
  • 机构:上海工程技术大学机械与汽车工程学院;
  • 出版日期:2019-10-17 13:00
  • 出版单位:水处理技术
  • 年:2019
  • 期:10
  • 基金:国家自然科学基金项目(51505274);; 上海市“东方学者”(QD2015036);; 上海市晨光计划(15CG58)
  • 语种:中文;
  • 页:41-44
  • 页数:4
  • CN:33-1127/P
  • ISSN:1000-3770
  • 分类号:X703.1
摘要
采用厚度为1 mm、边长为200 mm的方形镜面钢板,将一对间隔2.4 mm的单相压电换能器固定于钢板表面,结合驱动电路激发频率为1 MHz的兰姆波。研究了兰姆波在倾斜钢板上驱动油水分离过程,进而对油水分离的瞬时速度进行分析。结果表明,影响分离瞬时速度的3个主要因素,换能器两端的峰电压对油水分离起着主要作用;当峰电压和油水混合比不变时,倾斜角越大,则油水分离瞬时速度越大;当钢板倾斜角不变时,在相同的输入电压下,油水比越小,分离速度相对越大。与现有方法相比,兰姆波驱动法的优点在于,采用声波以非接触的方式驱动微流体对油水进行分离,且分离速度最快可以达到180 mm/s。
        A pair of single-phase transducer was glued on the 1 mm thick and 200 mm side length of the square steel substrate at a distance of 2.4 mm,the lamb wave with frequency of 1 MHz was stimulated by drive circuit. The oil-water separation process and the instantaneous velocity was studied and analyzed on the inclined steel plate driven by lamb wave. The results showed that there were three factors influence the oil-water separation progress,and the peak voltage of transducer played a major role in oil-water separation among them. When peak voltage and oil-water mixing ratio were unchanged,the bigger the slant angle, the higher the oil-water separation instantaneous velocity. When inclination of steel substrate was unchanged, the low mixing ratio, the higher the oil-water separation velocity under the same input voltage. Compared to existing oil-water separation methods, the lamb wave has the advantage of separating microfluids in a non-contact way and the separation velocity can reach speeds as high as 180 mm/s.
引文
[1] MEIKRANTZ D, SCHARDIN C, MACALUSO L. High volume centrifugal oil-water separation[C].IEEE,1995:21-25.
    [2] FOUAD Y O. Separation of cottonseed oil from oil-water emulsions using electrocoagulation technique[J].Alexandria Engineering Journal,2014,53(1):199-204.
    [3] WANG D, MCLAUGHLIN E, PFEFFER R. Adsorption of oils from pure liquid and oil-water emulsion on hydrophobic silica aerogels[J].Separation&Purification Technology,2012,99:28-35.
    [4] RULYOV N N, KOROLEV V Y, ZUBKOVA V A, et al. Separation of diluted fine-disperse water-oil emulsions by ultraflocculation and floatation[J].Journal of Water Chemistry&Technology,2010,32(6):352-357.
    [5] TAI M H, GAO P, TAN B Y L, et al. Highly efficient and flexible electrospun carbon-silica nanofibrous membrane for ultrafast gravitydriven oil-water separation[J].Acs Applied Materials&Interfaces,2014,6(12):9393.
    [6] WANG H, LI X, LI Y, et al. Simulation of phase separation with large component ratio for oil-in-water emulsion in ultrasound field[J].Ultrasonics Sonochemistry,2016,36:101-111.
    [7] GHAFOURIAN N H, HAMED M M T, KADKHODAEE R, et al.Modeling of oil-water emulsion separation in ultrasound standing wavefield by neural network[J].Journal of Dispersion Science&Technology,2013,34(4):490-495.
    [8] GARCIALOPEZ A, SINHA D N. Enhanced acoustic separation of oil-water emulsion in resonant cavities[J].Open Acoustics Journal,2008,1(1):66-71.
    [9] SHI Z, ZHANG W, ZHANG F, et al. Ultrafast separation of emulsified oil/water mixtures by ultrathin free-standing single-walled carbon nanotube network films[J].Advanced Materials,2013,25(17):2422-2427.
    [10] ZHU X, ZHANG Z, BO G, et al. A versatile approach to produce superhydrophobic materials used for oil-water separation[J].Journal of Colloid&Interface Science,2014,432(20):105-108.
    [11] ZHANG L, ZHONG Y, CHA D, et al. A self-cleaning underwater superoleophobic mesh for oil-water separation[J].Scientific Reports,2013,3(7):2326.
    [12] GANESAN S, TOBISKA L. Finite element simulation of a droplet impinging a horizontal surface[J].Journal of Sediment Research,2005:1-11.
    [13] YU K, WEI X, JIANG Z, et al. Surface acoustic wave(SAW)-induced particle rotation and aggregation in microdroplet[C].International Conference on Nano molecular Medicine and Engineering, IEEE,2017:138-143.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700