用户名: 密码: 验证码:
珠江三角洲秋季臭氧干沉降特征的数值模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical simulation of ozone dry deposition characteristics in autumn over the Pearl River Delta region, China
  • 作者:耿一超 ; 田春艳 ; 陈晓阳 ; 申冲 ; 王雪梅 ; 常鸣 ; 王明洁 ; 陈训来 ; 樊琦
  • 英文作者:GENG Yi-chao;TIAN Chun-yan;CHEN Xiao-yang;SHEN Chong;WANG Xue-mei;CHANG Ming;WANG Ming-jie;CHEN Xun-lai;FAN Qi;School of Atmospheric Sciences, Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University;Institute for Environmental and Climate Research, Jinan University;Shenzhen National Climate Observatory;
  • 关键词:珠江三角洲 ; WRF-Chem模式 ; 臭氧干沉降 ; 干沉降速率 ; 阻抗
  • 英文关键词:Pearl River Delta;;WRF-Chem model;;ozone dry deposition;;dry deposition velocity;;resistances
  • 中文刊名:中国环境科学
  • 英文刊名:China Environmental Science
  • 机构:中山大学大气科学学院广东省气候变化与自然灾害研究重点实验室;暨南大学环境与气候研究院;深圳市国家气候观象台;
  • 出版日期:2019-04-20
  • 出版单位:中国环境科学
  • 年:2019
  • 期:04
  • 基金:国家重点研发计划(2017YFC0210105,2016YFC0203305,2016YFC0203600);; 国家自然科学基金资助项目(91544102,41630422);; 深圳市科技计划项目(JCYJ20170306150333250);; 气象行业专项项目(GYHY201406031)
  • 语种:中文;
  • 页:3-12
  • 页数:10
  • CN:11-2201/X
  • ISSN:1000-6923
  • 分类号:X515
摘要
利用区域化学传输模式WRF-Chem对2014年10月珠江三角洲臭氧干沉降特征进行模拟,结果表明:臭氧干沉降通量呈现明显的时空分布差异,日间平均沉降通量[0.68μg/(m~2·s)]明显大于夜间[0.21μg/(m~2·s)];同时,珠江三角洲城区的臭氧沉降通量及日较差均比周边植被覆盖区小.受NO_x和VOCs等前体物以及各气象要素场的综合影响,臭氧浓度日变化具有明显的单峰型分布特征,在14:00~15:00达到峰值,秋季臭氧浓度高值区位于珠江三角洲主要排放源下风向区域的广佛交界、江门及中山东部等地区;臭氧的干沉降速率也具有明显的时空变化特征:从07:00~08:00的0.27cm/s开始迅速增大,10:00~16:00基本保持在0.60cm/s左右,17:00开始平缓减小至午夜的0.21cm/s左右;干沉降速率的变化主要受空气动力学阻抗R_a、粘性副层阻抗R_b以及表面阻抗R_c影响,研究表明夜间的干沉降速率主要受R_a影响,而日间R_c起主要作用.这3种阻抗分别受大气稳定度?摩擦速度和下垫面土地利用类型影响,在珠江三角洲区域亦表现出明显的时空变化特征.
        The regional chemical transport model WRF-Chem was used to simulate the spatial and temporal characteristics of O_3 dry deposition flux in the Pearl River Delta(PRD) region in October 2014. The results show obvious spatial and temporal differences of ozone dry deposition flux: the mean flux in the daytime [0.68μg/(m~2·s)] was higher than that in the night time [0.21μg/(m~2·s)]; the O_3 deposition flux and its diurnal variation in the urban areas are smaller than those in the sub-urban areas. Moreover, the O_3 concentrations had obvious daily single-peak distribution characteristics which influenced by the precursors such as NOx and VOCs,as well as the meteorological conditions. The peaks generally occur during 14:00~15:00, and the high concentrations were mainly located in the Guangfo junction、Jiangmen city and east Zhongshan city. The dry deposition velocity of O_3 also present significant spatial and temporal variations. It increased rapidly from 0.27 cm/s during 07:00~08:00 to a relatively stable value 0.60 cm/s during 10:00~16:00; and then decreased slowly to 0.21 cm/s from 17:00 to midnight. The dry deposition velocity was mainly affected by three types of resistances: the aerodynamic resistance(R_a), sublayer resistance(R_b) and canopy resistance(R_c). Our results show that the dry deposition velocity at night was mainly affected by Ra, while in the daytime Rc played a major role. These three resistances were mainly influenced by the stability、the friction velocity and the landuse type of the underlying surface.
引文
[1]李硕,郑有飞,吴荣军,等.冬麦田臭氧干沉降过程的观测[J].应用生态学报,2016,27(6):1811-1819.Li S,Zheng Y F,Wu R J,et al.Observation of ozone dry deposition in the field of winter wheat[J].Chinese Journal of Applied Ecology(in Chinese),2016,27(6):1811-1819.
    [2]闫美霖,李湉湉,刘晓途,等.我国臭氧短期暴露的人群健康效应研究进展[J].环境与健康杂志,2012,29(8):752-760.Yan M L,Li T T,Liu X T,et al.Human health effects of short-term ozone exposure:a review of Chinese epidemiological evidence[J].JEnviron Health(in Chinese),2012,29(8):752-760.
    [3]李硕.冬小麦麦田臭氧干沉降机制的观测模拟研究[D].南京:南京信息工程大学,2014.Li S.Measurements and modeling the mechanism of ozone dry deposition on the yields of winter wheat[D].Nanjing:Nanjing University of Information Science&Technology(in Chinese),2014.
    [4]朱治林,孙晓敏,董云社,等.鲁西北平原玉米地涡度相关臭氧通量日变化特征[J].中国科学:地球科学,2014,44(2):292-301.Zhu Z L,Sun X M,Dong Y S,et al.Diurnal variation of ozone flux over corn field in Northwestern Shandong Plain of China[J].Science China:Earth Sciences(in Chinese),2014,44(2):292-301.
    [5]许亮.冬小麦气孔与冠层O3吸收通量的观测与模拟研究[D].南京:南京信息工程大学,2015.Xu L.Research of observation and simulation winter wheat stomatal and canopy O3 absorbed flux[D].Nanjing:Nanjing University of Information Science&Technology(in Chinese),2015.
    [6]赵辉,郑有飞,曹嘉晨,等.大气臭氧污染对冬小麦气孔吸收通量的影响机制及其时空格局[J].环境科学,2017,38(1):412-422.Zhao H,Zheng Y F,Cao J C,et al.Influencing mechanism and spatio-temporal pattern of stomatal ozone flux of winter wheat under Ozone pollution[J].Environmental Science(in Chinese),2017,38(1):412-422.
    [7]Milo Z,Pavel C,Petr C,et al.Ozone flux over a Norway spruce forest and correlation with net ecosystem production[J].Environmental Pollution,2011,159:1024-1034.
    [8]Silvano F,Megan M,Rupert H,et al.Ozone fluxes in a Pinus ponderosa ecosystem are dominated by non-stomatal processes:Evidence from long-term continuous measurements[J].Agricultural and Forest Meteorology,2010,150:420-431.
    [9]Coyle M,Nemitz E,Storeton-West,et al.Measurements of ozone deposition to a potato canopy[J].Agricultural and Forest Meteorology,2009,49:655-666.
    [10]潘小乐,王自发,王喜全,等.秋季在北京城郊草地下垫面上的一次臭氧干沉降观测试验[J].大气科学,2010,34(1):120-130.Pan X L,Wang Z F,Wang X Q,et al.An observation study of ozone dry deposition over grassland in the suburban area of Beijing[J].Chinese Journal of Atmospheric Sciences(in Chinese),2010,34(1):120-130.
    [11]Wu Z Y,Staebler R,Vet R,et al.Dry deposition of O3 and SO2estimated from gradient measurements above a temperate mixed forest[J].Environmental Pollution,2016,210:202-210.
    [12]Atsuyuki S,Kazuhiko S,Hidekazu I,et al.Measurements of sulfur dioxide and ozone dry deposition over short vegetation in northern China:A preliminary study[J].Atmospheric Environment,2003,37:3157-3166.
    [13]Cieslik S.Ozone fluxes over various plant ecosystems in Italy:Areview[J].Environmental Pollution,2009,157:1487-1496.
    [14]Lagzi I,Me′sza′ros R,Horva′th L,et al.Modelling ozone fluxes over Hungary[J].Atmospheric Environment,2004,38:6211-6222.
    [15]Rydsaa J H,Stordal F,Gerosa G,et al.Evaluating stomatal ozone fluxes in WRF-Chem:Comparing ozone uptake in Mediterranean ecosystems[J].Atmospheric Environment,2016,143:237-248.
    [16]黄积庆,郑有飞,徐静馨,等.南京秋季裸地臭氧干沉降通量观测及土壤阻力模拟[J].应用生态学报,2016,27(10):3196-3204.Huang J Q,Zheng Y F,Xu J X,et al.O3 dry deposition flux observation and soil resistance modeling over a bare soil in Nanjing area in autumn[J].Chinese Journal of Applied Ecology(in Chinese),2016,27(10):3196-3204.
    [17]刘俊,郑有飞,赵辉,等.水稻田臭氧干沉降日变化特征研究[J].生态环境学报,2017,26(11):1935-1941.Liu J,Zheng Y F,Zhao H,et al.Diurnal variational characteristics of ozone dry deposition over a rice field[J].Ecology and Environmental Sciences(in Chinese),2017,26(11):1935-1941.
    [18]Muller J B A,Dorsey J R,Flynn M,et al.Energy and ozone fluxes over sea ice[J].Atmospheric Environment,2012,47:218-225.
    [19]叶绿萌,樊少芬,常鸣,等.珠三角地区秋季臭氧生成敏感性时空变化模拟研究[J].南京大学学报(自然科学),2016,52(6):977-988.Ye L M,Fan S F,Chang M,et al.Spatial and temporal distribution of ozone sensitive district in Pearl River Delta region during autumn[J].Journal of Nanjing University(Natural Sciences)(in Chinese),2016,52(6):977-988.
    [20]沈劲,陈皓,钟流举,等.珠三角秋季臭氧污染来源解析[J].环境污染与防治,2015,37(1):25-30.Shen J,Chen H,Zhong L J,et al.Ozone source apportionment in the Pearl River Delta in autumn[J].Environmental Pollution&Control(in Chinese),2015,37(1):25-30.
    [21]李泽琨.珠江三角洲地区臭氧及其前体物非线性响应特征及控制对策研究[D].广州:华南理工大学,2015.Li Z K.Characterization of the nonlinearity of ozone and its precursor emission changes and control strategies in the Pearl River Delta region[D].Guangzhou:South China University of Technology(in Chinese),2015.
    [22]Wesely M L,Hicks B B.A review of the current status of knowledge on dry deposition[J].Atmospheric Environment,2000,34:2261-2282.
    [23]常鸣.典型亚热带森林干沉降参数化改进及其对区域活性氮沉降估算的影响[D].广州:中山大学,2016.Chang M.Impact of improved parameterization on the dry deposition of reactive nitrogen in a Southern China forest[D].Guangzhou:Sun Yat-sen University(in Chinese),2016.
    [24]薛文博,王金南,杨金田,等.国内外空气质量模型研究进展[J].环境与可持续发展,2013,38(3):14-20.Xue J B,Wang J N,Yang J T,et al.Domestic and foreign research progress of air quality model[J].Environment and Sustainable Development(in Chinese),2013,38(3):14-20.
    [25]Zheng J Y,Zhang L J,Che W W,et al.A highly resolved temporal and spatial air pollutant emission inventory for the Pearl River Delta region,China and its uncertainty assessment[J].Atmospheric Environment,2009,43(32):5112-5122.
    [26]https://www.acom.ucar.edu/wrf-chem/download.shtml.
    [27]Guenther A,Karl T,Harley P,et al.Estimates of global terrestrial isoprene emissions using MEGAN(Model of Emissions of Gases and Aerosols from Nature)[J].Atmospheric Chemistry and Physics,2006,6:3181-3210.
    [28]费岚,宫传刚.中国典型区域GLC2009数据的精度评价[J].黑龙江科技大学学报,2014,24(6):658-662.Fei L,Gong C G.Accuracy evaluation of globe land cover products GLC2009in typical regions in China[J].Journal of Heilongjiang University of Science&Technology(in Chinese),2014,24(6):658-662.
    [29]常鸣,樊少芬,王雪梅.珠三角土地覆被资料优选及在WRF模式中的初步应用[J].环境科学学报,2014,34(8):1922-1933.Chang M,Fan S F,Wang X M.Impact of refined land-cover data on WRF performance over the Pearl River Delta region,China[J].Acta Scientiae Circumstantiae(in Chinese),2014,24(6):658-662.
    [30]郑君瑜,张理俊,钟流举,等.珠江三角洲大气面源排放清单及空间分布特征[J].中国环境科学,2009,29(5):455-460.Zheng J Y,Zhang L J,Zhong L J,et al.Area source emission inventory of air pollutant and its spatial distribution characteristics in Pearl River Delta[J].China Environmental Science(in Chinese),2009,29(5):455-460.
    [31]苏航,银燕,朱彬,等.中国环渤海地区SO2和NO2干沉降数值模拟及影响因子分析[J].中国环境科学,2012,32(11):1921-1932.Su H,Yin Y,Zhu B,et al.Numerical simulation and sensitive factors analyse for dry deposition of SO2 and NO2 in Bohai Rim area of China[J].China Environmental Science(in Chinese),2012,32(11):1921-1932.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700