用户名: 密码: 验证码:
针铁矿改性生物炭对砷吸附性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Application of Goethite Modified Biochar for Arsenic Removal from Aqueous Solution
  • 作者:朱司航 ; 赵晶晶 ; 尹英杰 ; 商建英 ; 陈冲 ; 瞿婷
  • 英文作者:ZHU Si-hang;ZHAO Jing-jing;YIN Ying-jie;SHANG Jian-ying;CHEN Chong;QU Ting;Key Laboratory of Plant-Soil Interactions,Ministry of Education,College of Resources and Environmental Sciences,China Agricultural University;Key Laboratory of Arable Land Conservation (North China) , Ministry of Agriculture,College of Resources and Environmental Sciences,China Agricultural University;
  • 关键词:生物炭(BC) ; 针铁矿 ; 改性 ; 砷(As) ; 吸附
  • 英文关键词:biochar(BC);;goethite;;modification;;arsenic(As);;adsorption
  • 中文刊名:环境科学
  • 英文刊名:Environmental Science
  • 机构:中国农业大学资源与环境学院教育部植物-土壤相互作用重点实验室;中国农业大学资源与环境学院农业部华北耕地保育重点实验室;
  • 出版日期:2019-01-20 17:30
  • 出版单位:环境科学
  • 年:2019
  • 期:06
  • 基金:国家重点研发计划项目(2017YFD0801503);; 国家级创新训练项目(201710019065,201810019087)
  • 语种:中文;
  • 页:283-292
  • 页数:10
  • CN:11-1895/X
  • ISSN:0250-3301
  • 分类号:X703
摘要
为了提高生物炭(BC)对砷的吸附能力,本研究选取小麦秸秆作为原料,采用共沉淀方法制备了针铁矿(Goethite)改性生物炭材料(Goethite@BC).比较了BC、Goethite和Goethite@BC对As(Ⅲ)的吸附特性,同时使用SEM-EDS、BET、FT-IR、XRD和XPS等技术对改性吸附剂的理化性质和吸附机制进行表征.结果表明,扫描电子显微镜分析显示有纳米级针铁矿附着在生物炭表面,可有效提高生物炭的比表面积和总孔容; 3种吸附剂对As(Ⅲ)的吸附符合伪二级动力学模型和Langmuir等温吸附模型,Goethite@BC对As(Ⅲ)的最大吸附量为65. 20 mg·g~(-1),与BC相比吸附量提高了62. 10倍. Goethite@BC吸附机制包括非特异性吸附(静电引力)和特异性吸附(配位、络合、离子交换等),纳米针铁矿颗粒在Goethite@BC表面对污染物的吸附起到重要作用. Goethite@BC在污染物修复领域具有很好地应用前景.
        To improve the adsorption capacity of wheat biochar(BC) for arsenic(As),wheat stalks were selected as biomass to generate nano-sized goethite modified biochar(Goethite@ BC) by co-precipitation. The adsorption capacities of BC,Goethite,and Goethite@ BC for As(Ⅲ) were compared. The samples were analyzed by scanning electron microscopy(SEM) along with energy dispersive spectrometry(EDS),Brunauer-Emmett-Teller(BET),Fourier transform infrared(FT-IR),X-ray diffraction(XRD),and X-ray photoelectron spectroscopy(XPS) techniques. The results showed that the nano-goethite coating was uniformly attached to the surface of the BC and improved the surface area and total pore volume of the biochar. The adsorption of As(Ⅲ) by the three adsorbents was proved to fit well with the pseudo-second-order kinetic model and the Langmuir model. Compared to BC,the Goethite@ BC increased the adsorption rate of As(Ⅲ) by 62. 10 times,and the maximum adsorption capacity of Goethite@ BC was 65. 20 mg·g~(-1).The adsorption mechanism of Goethite@ BC included non-specific adsorption(electrostatic attraction) and specific adsorption(coordination,complexation,ion exchange,etc.),and nano-goethite particles on the Goethite@ BC surface played an important role in the adsorption of As. Goethite@ BC has a good application prospects in the field of environmental remediation.
引文
[1]林璐,胥嘉瑞,吴昊,等.不同粒径铁铝泥对砷(III)的吸附效果[J].环境科学,2013,34(7):2758-2765.Lin L, Xu J R, Wu H, et al. Effectiveness of Arsenite adsorption by ferric and alum water treatment residuals with different grain sizes[J]. Environmental Science,2013,34(7):2758-2765.
    [2]马玉玲,马杰,陈雅丽,等.水铁矿及其胶体对砷的吸附与吸附形态[J].环境科学,2018,39(1):179-186.Ma Y L,Ma J,Chen Y L,et al. Arsenic adsorption and its species on ferrihydrite and ferrihydrite colloid[J]. Environmental Science,2018,39(1):179-186.
    [3] Wang S S,Gao B,Zimmerman A R,et al. Removal of arsenic by magnetic biochar prepared from pinewood and natural hematite[J]. Bioresource Technology,2015,175:391-395.
    [4] Liu S B,Huang B Y,Chai L,et al. Enhancement of As(Ⅴ)adsorption from aqueous solution by a magnetic chitosan/biochar composite[J]. RSC Advances,2017,7(18):10891-10900.
    [5] Fisher D J,Yonkos L T,Staver K W. Environmental concerns of roxarsone in broiler poultry feed and litter in Maryland,USA[J].Environmental Science and Technology,2015,49(4):1999-2012.
    [6] Shakoor M B,Nawaz R,Hussain F,et al. Human health implications,risk assessment and remediation of As-contaminated water:a critical review[J]. Science of the Total Environment,2017,601-602:756-769.
    [7]史力争,陈惠康,吴川,等.赤泥及其复合钝化剂对土壤铅、镉和砷的稳定效应[J].中国科学院大学学报,2018,35(5):617-626.Shi L Z,Chen H K,Wu C,et al. Effects of red mud and the combinations on lead, cadmium, and arsenic availability in contaminated soil[J]. Journal of University of Chinese Academy of Sciences,2018,35(5):617-626.
    [8] Li D,Guo X Y,Tian Q H,et al. Synthesis and application of Friedel's salt in arsenic removal from caustic solution[J].Chemical Engineering Journal,2017,323:304-311.
    [9] You S J,Lu J D,Tang C Y,et al. Rejection of heavy metals in acidic wastewater by a novel thin-film inorganic forward osmosis membrane[J]. Chemical Engineering Journal,2017,320:532-538.
    [10]曾辉平,吕赛赛,杨航,等.铁锰泥除砷颗粒吸附剂对As(Ⅴ)的吸附去除[J].环境科学,2018,39(1):170-178.Zeng H P,Lv S S,Yang H,et al. Arsenic(Ⅴ)removal by granular adsorbents made from backwashing residuals from biofilters for iron and manganese removal[J]. Environmental Science,2018,39(1):170-178.
    [11] Rattanachueskul N,Saning A,Kaowphong S,et al. Magnetic carbon composites with a hierarchical structure for adsorption of tetracycline,prepared from sugarcane bagasse via hydrothermal carbonization coupled with simple heat treatment process[J].Bioresource Technology,2017,226:164-172.
    [12] Vu T M,Trinh V T,Doan D P,et al. Removing ammonium from water using modified corncob-biochar[J]. Science of the Total Environment,2016,579:612-619.
    [13] Zhang W H,Mao S Y,Chen H,et al. Pb(II)and Cr(VI)sorption by biochars pyrolyzed from the municipal wastewater sludge under different heating conditions[J]. Bioresource Technology,2013,147:545-552.
    [14] Ahmad M,Rajapaksha A U,Lim J E,et al. Biochar as a sorbent for contaminant management in soil and water:a review[J]. Chemosphere,2014,99:19-33.
    [15] Usman A R,Ahmad M,El-Mahrouky M,et al. Chemically modified biochar produced from conocarpus waste increases NO3removal from aqueous solutions[J]. Environmental Geochemistry and Health,2016,38(2):511-521.
    [16] Zhang M,Gao B,Varnoosfaderani S,et al. Preparation and characterization of a novel magnetic biochar for arsenic removal[J]. Bioresource Technology,2013,130:457-462.
    [17] Chen M D, Wumaie T, Li W L, et al. Electrochemical performance of cotton stalk based activated carbon electrodes modified by MnO2for supercapacitor[J]. Materials Technology,2015,30:A2-A7.
    [18] Wang S S,Gao B,Li Y C,et al. Manganese oxide-modified biochars:preparation,characterization,and sorption of arsenate and lead[J]. Bioresource Technology,2015,181:13-17.
    [19] Huang H,Tang J C,Gao K,et al. Characterization of KOH modified biochars from different pyrolysis temperatures and enhanced adsorption of antibiotics[J]. RSC Advances,2017,7(24):14640-14648.
    [20] Luo J W,Li X,Ge C J,et al. Sorption of norfloxacin,sulfamerazine and oxytetracycline by KOH-modified biochar under single and ternary systems[J]. Bioresource Technology,2018,263:385-392.
    [21] Mohan D,Pittman Jr C U,Bricka M,et al. Sorption of arsenic,cadmium,and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production[J]. Journal of Colloid and Interface Science,2007,310(1):57-73.
    [22] Hu X,Ding Z H,Zimmerman A R,et al. Batch and column sorption of arsenic onto iron-impregnated biochar synthesized through hydrolysis[J]. Water Research,2015,68:206-216.
    [23] Li H,Mahyoub S A A,Liao W J,et al. Effect of pyrolysis temperature on characteristics and aromatic contaminants adsorption behavior of magnetic biochar derived from pyrolysis oil distillation residue[J]. Bioresource Technology,2017,223:20-26.
    [24] Wang Y,Wu H,Sárossy Z,et al. Release and transformation of chlorine and potassium during pyrolysis of KCl doped biomass[J]. Fuel,2017,197:422-432.
    [25] Deng J Q,Liu Y G,Liu S B,et al. Competitive adsorption of Pb(II), Cd(Ⅱ)and Cu(Ⅱ)onto chitosan-pyromellitic dianhydride modified biochar[J]. Journal of Colloid and Interface Science,2017,506:355-364.
    [26] Ge Y Y,Cui X M,Liao C L,et al. Facile fabrication of green geopolymer/alginate hybrid spheres for efficient removal of Cu(Ⅱ)in water:batch and column studies[J]. Chemical Engineering Journal,2017,311:126-134.
    [27] Yang X,Xu G R,Yu H R,et al. Preparation of ferric-activated sludge-based adsorbent from biological sludge for tetracycline removal[J]. Bioresource Technology,2016,211:566-573.
    [28]张翔凌,邓礼楚,方晨佳,等.不同类型LDHs负载改性麦饭石对Cr(VI)吸附性能[J].环境科学,2019,40(1):300-309.Zhang X L,Deng L C,Fang C J,et al. Adsorption of Cr(V)from water by maifanite modified with different LDHs coatings[J]. Environmental Science,2019,40(1):300-309.
    [29] Yoon K,Cho D W,Tsang D C W,et al. Fabrication of engineered biochar from paper mill sludge and its application into removal of arsenic and cadmium in acidic water[J]. Bioresource Technology,2017,246:69-75.
    [30]易蔓,李婷婷,李海红,等. Ca/Mg负载改性沼渣生物炭对水中磷的吸附特性[J].环境科学,2019,40(3):1318-1327.Yi M,Li T T,Li H H,et al. Characteristic of phosphorus adsorption in aqueous solution by Ca/Mg-loaded biogas residue biochar[J]. Environmental Science,2019,40(3):1318-1327.
    [31] Yang Q, Wang X L, Luo W, et al. Effectiveness and mechanisms of phosphate adsorption on iron-modified biochars derived from waste activated sludge[J]. Bioresource Technology,2017,247:537-544.
    [32] Yang W,Wang Y,Shang J Y,et al. Antagonistic effect of humic acid and naphthalene on biochar colloid transport in saturated porous media[J]. Chemosphere,2017,189:556-564.
    [33] Johnston R B,Singer P C. Redox reactions in the Fe-As-O2system[J]. Chemosphere,2007,69(4):517-525.
    [34] Cheng H F,Hu Y N,Luo J,et al. Geochemical processes controlling fate and transport of arsenic in acid mine drainage(AMD)and natural systems[J]. Journal of Hazardous Materials,2009,165(1-3):13-26.
    [35] Manning B A,Hunt M L,Amrhein C,et al. Arsenic(Ⅲ)and Arsenic(Ⅴ)reactions with zerovalent iron corrosion products[J]. Environmental Science and Technology,2016,36(24):5455-5461.
    [36] Wu J Z,Huang D,Liu X M,et al. Remediation of As(Ⅲ)and Cd(Ⅱ)co-contamination and its mechanism in aqueous systems by a novel calcium-based magnetic biochar[J]. Journal of Hazardous Materials,2018,348:10-19.
    [37] Prucek R,Tuˇc ek J,Kolaˇrík J,et al. Ferrate(Ⅵ)-induced arsenite and arsenate removal by in situ structural incorporation into magnetic iron(III)oxide nanoparticles[J]. Environmental Science and Technology,2013,47(7):3283-3292.
    [38] Lan B Y,Wang Y X,Wang X,et al. Aqueous arsenic(As)and antimony(Sb)removal by potassium ferrate[J]. Chemical Engineering Journal,2016,292:389-397.
    [39] Wu L K,Wu H,Zhang H B,et al. Graphene oxide/CuFe2O4foam as an efficient absorbent for arsenic removal from water[J].Chemical Engineering Journal,2018,334:1808-1819.
    [40] Wen T,Wang J,Yu S J,et al. Magnetic porous carbonaceous material produced from tea waste for efficient removal of As(Ⅴ),Cr(Ⅵ),humic acid,and dyes[J]. ACS Sustainable Chemistry and Engineering,2017,5(5):4371-4380.
    [41] Baig S A,Zhu J,Muhammad N,et al. Effect of synthesis methods on magnetic Kans grass biochar for enhanced As(Ⅲ,Ⅴ)adsorption from aqueous solutions[J]. Biomass and Bioenergy,2014,71:299-310.
    [42] Reddy D H K,Lee S M. Magnetic biochar composite:facile synthesis, characterization, and application for heavy metal removal[J]. Colloids and Surfaces A Physicochemical and Engineering Aspects,2014,454:96-103.
    [43] Agrafioti E,Kalderis D,Diamadopoulos E. Ca and Fe modified biochars as adsorbents of arsenic and chromium in aqueous solutions[J]. Journal of Environmental Management,2014,146:444-450.
    [44] Ye T,Wu M,Lin X B,et al. Synthesis of magnetic wheat straw for arsenic adsorption[J]. Journal of Hazardous Materials,2011,193:10-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700