用户名: 密码: 验证码:
生物炭修复重金属污染土壤的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Advances in remediation of heavy metal contaminated soil by biochar
  • 作者:鲁秀国 ; 武今巾 ; 过依婷
  • 英文作者:LU Xiu-guo;WU Jin-jin;GUO Yi-ting;School of Civil Engineering and Architecture,East China Jiaotong University;
  • 关键词:生物炭 ; 土壤重金属 ; 特性 ; 修复机理 ; 影响因素
  • 英文关键词:biochar;;soil heavy metal;;characteristic;;repair mechanism;;influence factor
  • 中文刊名:应用化工
  • 英文刊名:Applied Chemical Industry
  • 机构:华东交通大学土木建筑学院;
  • 出版日期:2019-03-13 10:59
  • 出版单位:应用化工
  • 年:2019
  • 期:05
  • 基金:国家自然科学基金资助(51768018);; 国家科技支撑计划项目(2014BAC04B03)
  • 语种:中文;
  • 页:192-197
  • 页数:6
  • CN:61-1370/TQ
  • ISSN:1671-3206
  • 分类号:X53
摘要
综述了生物炭的基本特性如元素组成、比表面积和孔隙度、pH和Zeta电位、表面官能团等,并在此基础上介绍了生物炭修复重金属的机理如离子交换、静电作用、物理吸附、阳离子-π作用、络合以及沉淀作用,简述了影响生物炭修复效果的主要因素如生物炭种类及添加量、土体理化性质等。最后,对今后生物炭在土壤重金属修复工作的研究方向作出了展望。
        The basic characteristics of biological carbon,such as element composition,specific surface area and porosity,pH and Zeta potential and surface functional group,are reviewed.On this basis,the mechanism of biological carbon for heavy metals repair,such as ion exchange,electrostatic action,physical adsorption,cation-π,complexation and precipitation,is briefly described.The main factors influencing the restoration effect of biochar,such as biochar species,amount of addition,physical and chemical properties of soil,were introduced.At last,the future research direction of biochar in soil heavy metal restoration is prospected.
引文
[1] Liu L,Li W,Song W,et al.Remediation techniques for heavy metal-contaminated soils:Principles and applicability[J].Science of the Total Environment,2018,633:206-219.
    [2] 陶术平,向速林,桑文静,等.生物炭对土壤重金属影响研究进展[J].现代化工,2017(1):45-49.
    [3] Beiyuan J,Awad Y M,Beckers F,et al.Mobility and phytoavailability of As and Pb in a contaminated soil using pine sawdust biochar under systematic change of redox conditions[J].Chemosphere,2017,178:110-118.
    [4] Shen Z,Zhang Y,Jin F,et al.Qualitative and quantitative characterisation of adsorption mechanisms of lead on four biochars[J].Science of the Total Environment,2017,609:1401-1410.
    [5] Li H,Dong X,Da S E,et al.Mechanisms of metal sorption by biochars:Biochar characteristics and modifications[J].Chemosphere,2017,178:466-478.
    [6] 陈志良,袁志辉,黄玲,等.生物炭来源、性质及其在重金属污染土壤修复中的研究进展[J].生态环境学报,2016,25(11):1879-1884.
    [7] 陈昱,钱云,梁媛,等.生物炭对Cd污染土壤的修复效果与机理[J].环境工程学报,2017,11(4):2528-2534.
    [8] 肖然.生物炭的制备及其对养分保留和重金属钝化的潜力研究[D].杨凌:西北农林科技大学,2017.
    [9] 陈温福,张伟明,孟军.农用生物炭研究进展与前景[J].中国农业科学,2013,46(16):3324-3333.
    [10] 姜秀艳.污泥基生物炭制备表征及土壤改良应用研究[D].哈尔滨:哈尔滨工业大学,2014.
    [11] 王定美,徐荣险,秦冬星,等.水热炭化终温对污泥生物炭产量及特性的影响[J].生态环境学报,2012(10):1775-1780.
    [12] Zielinska A,Oleszczuk P.Effect of pyrolysis temperatures on freely dissolved polycyclic aromatic hydrocarbon (PAH) concentrations in sewage sludge-derived biochars[J].Chemosphere,2016,153:68-74.
    [13] Chun Y,Sheng G,Chiou C T,et al.Compositions and sorptive properties of crop residue-derived chars[J].Environmental Science & Technology,2004,38(17):4649-4655.
    [14] Nguyen B T,Lehmann J,Hockaday W C,et al.Temperature sensitivity of black carbon decomposition and oxidation[J].Environmental Science & Technology,2010,44(9):3324-3331.
    [15] Jin J,Li Y,Zhang J,et al.Influence of pyrolysis temperature on properties and environmental safety of heavy metals in biochars derived from municipal sewage sludge[J].Journal of Hazardous Materials,2016,320:417-426.
    [16] Chen B,Zhou D,Zhu L.Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures[J].Environmental Science & Technology,2008,42(14):5137-5143.
    [17] Hossain M K,Strezov V,Chan K Y,et al.Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar[J].Journal of Environmental Management,2011,92(1):223-228.
    [18] Liu Y,Yang M,Wu Y,et al.Reducing CH4,and CO2,emissions from waterlogged paddy soil with biochar[J].Journal of Soils & Sediments,2011,11(6):930-939.
    [19] 王萌萌,周启星.生物炭的土壤环境效应及其机制研究[J].环境化学,2013(5):768-780.
    [20] 计海洋,汪玉瑛,吕豪豪,等.不同炭化温度制备的蚕丝被废弃物生物炭对重金属Cd2+的吸附性能[J].应用生态学报,2018,29(4):1328-1338.
    [21] Jin H,Capareda S,Chang Z,et al.Biochar pyrolytically produced from municipal solid wastes for aqueous As(V) removal:adsorption property and its improvement with KOH activation[J].Bioresource Technology,2014,169(5):622-629.
    [22] 袁金华,徐仁扣.稻壳制备的生物质炭对红壤和黄棕壤酸度的改良效果[J].生态与农村环境学报,2010,26(5):472-476.
    [23] Yuan J H,Xu R K,Zhang H.The forms of alkalis in the biochar produced from crop residues at different temperatures[J].Bioresour Technol,2011,102(3):3488-3497.
    [24] Alwabel M I,Alomran A,Elnaggar A H,et al.Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes[J].Bioresource Technology,2013,131(3):374-379.
    [25] 朱庆祥.生物炭对Pb、Cd污染土壤的修复试验研究[D].重庆:重庆大学,2011.
    [26] Tan X F,Liu Y G,Gu Y L,et al.Biochar-based nano-composites for the decontamination of wastewater:A review[J].Bioresour Technol,2016,212:318-333.
    [27] Chen Z,Xiao X,Chen B,et al.Quantification of chemical states,dissociation constants and contents of oxygen-containing groups on the surface of biochars produced at different temperatures[J].Environmental Science & Technology,2015,49(1):309-317.
    [28] Shaaban A,Se S M,Mitan N M,et al.Characterization of biochar derived from rubber wood sawdust through slow pyrolysis on surface porosities and functional groups[J].Procedia Engineering,2013,68:365-371.
    [29] 胡雅君.利用麦芽根制备的生物炭修复汞污染土壤研究[D].杭州:浙江大学,2018.
    [30] Gul S,Whalen J K,Thomas B W,et al.Physico-chemical properties and microbial responses in biochar-amended soils:Mechanisms and future directions[J].Agriculture Ecosystems & Environment,2015,206:46-59.
    [31] 安梅,董丽,张磊,等.不同种类生物炭对土壤重金属镉铅形态分布的影响[J].农业环境科学学报,2018,37(5):892-898.
    [32] 李力,陆宇超,刘娅,等.玉米秸秆生物炭对Cd(Ⅱ)的吸附机理研究[J].农业环境科学学报,2012(11):2277-2283.
    [33] Wang Y,Yin R,Liu R.Characterization of biochar from fast pyrolysis and its effect on chemical properties of the tea garden soil[J].Journal of Analytical & Applied Pyrolysis,2014,110(1):375-381.
    [34] Zhang F,Wang X,Yin D,et al.Efficiency and mechanisms of Cd removal from aqueous solution by biochar derived from water hyacinth (Eichornia crassipes)[J].Journal of Environmental Management,2015,153:68-73.
    [35] 李金文,顾凯,唐朝生,等.生物炭对土体物理化学性质影响的研究进展[J].浙江大学学报:工学版,2018(1):192-206.
    [36] Kumpiene J,Lagerkvist A,Maurice C.Stabilization of As,Cr,Cu,Pb and Zn in soil using amendments——a review[J].Waste Management,2008,28(1):215-225.
    [37] 唐行灿.生物炭修复重金属污染土壤的研究[D].泰安:山东农业大学,2013.
    [38] 马献发,李伟彤,孟庆峰,等.生物炭对土壤重金属形态特征及迁移转化影响研究进展[J].东北农业大学学报,2017,48(6):82-90.
    [39] Bao G H,Ho C T,Barasch J.The ligands of neutrophil gelatinase-associated lipocalin[J].Rsc Advances,2015,5(126):104363.
    [40] 聂静嫄.蛋白内cation-π相互作用的单分子力谱研究[D].南京:南京大学,2018.
    [41] 董爱琴,谢杰,刘佳,等.土壤重金属钝化材料生物炭的研究进展[J].环境污染与防治,2017,39(3):319-325.
    [42] Xu X,Cao X,Zhao L,et al.Removal of Cu,Zn,and Cd from aqueous solutions by the dairy manure-derived biochar[J].Environ Sci Pollut Res Int,2013,20(1):358-368.
    [43] 赵青青,陈蕾伊,史静.生物质炭对重金属土壤环境行为及影响机制研究进展[J].环境科学导刊,2017,36(2):12-18.
    [44] Jiang T Y,Jiang J,Xu R K,et al.Adsorption of Pb(II) on variable charge soils amended with rice-straw derived biochar[J].Chemosphere,2012,89(3):249-256.
    [45] 徐楠楠,林大松,徐应明,等.玉米秸秆生物炭对Cd2+的吸附特性及影响因素[J].农业环境科学学报,2014,33(5):958-964.
    [46] 张连科,刘心宇,王维大,等.两种油料作物秸秆生物炭对土壤中铅的钝化修复[J].生态环境学报,2018(1):166-173.
    [47] 王红,夏雯,卢平,等.生物炭对土壤中重金属铅和锌的吸附特性[J].环境科学,2017,38(9):3944-3952.
    [48] Dugan E,Verhoef A,Robinson S,et al.Biochar from sawdust,maize stover and charcoal:Impact on water holding capacities (WHC) of three soils from Ghana[C]//Proceedings of the World Congress of Soil Science.Brisbane:Soil Solutions for A Changing World F,2010.
    [49] 鲁秀国,党晓芳,鄢培培.核桃壳对水中Pb2+和Ni2+吸附研究[J].华东交通大学学报,2013(5):42-46.
    [50] 赵乾程,杨欣,曹田,等.土壤重金属污染原位钝化修复及效果评价进展研究[J].环境科学与管理,2016,41(12):98-102.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700