用户名: 密码: 验证码:
微生物介导的硝酸盐还原耦合亚铁氧化成矿研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Formation of Fe(Ⅲ)-minerals by Microbially Mediated Coupling of Nitrate Reduction and Fe(Ⅱ) Oxidation: A Review
  • 作者:刘同旭 ; 程宽 ; 陈丹丹 ; 王莹 ; 殷云璐 ; 李芳柏
  • 英文作者:LIU Tongxu;CHENG Kuan;CHEN Dandan;WANG Ying;YIN Yunlu;LI Fangbai;Guangdong Institute of Eco-Environmental Science & Technology;Guangzhou Institute of Geochemistry, Chinese Academy of Science;University of Chinese Academy of Sciences;
  • 关键词:硝酸盐还原亚铁氧化微生物 ; 亚铁氧化 ; 矿物 ; 细胞结壳
  • 英文关键词:NO3--reducing Fe(Ⅱ)-oxidizing(NRFO) bacteria;;Fe(Ⅱ) oxidation;;mineral;;cell encrustation
  • 中文刊名:生态环境学报
  • 英文刊名:Ecology and Environmental Sciences
  • 机构:广东省生态环境技术研究所;中国科学院广州地球化学研究所;中国科学院大学;
  • 出版日期:2019-03-18
  • 出版单位:生态环境学报
  • 年:2019
  • 期:03
  • 基金:国家自然科学基金委中英国际合作红壤关键带项目(41571130052)
  • 语种:中文;
  • 页:196-204
  • 页数:9
  • CN:44-1661/X
  • ISSN:1674-5906
  • 分类号:X172;X50
摘要
铁氧化微生物驱动的亚铁氧化过程是铁循环的重要组成部分。在中性厌氧环境中,硝酸盐还原亚铁氧化微生物可通过还原硝酸盐耦合氧化亚铁的过程影响污染物的降解及重金属的迁移转化等,对环境保护具有重要意义。文章主要综述了近年来有关硝酸盐还原亚铁氧化微生物驱动的不同形态亚铁氧化的成矿过程,成矿机制及其对微生物和环境的影响等。在亚铁氧化成矿的过程中,有机配体态和固态亚铁的氧化成矿主要发生在细胞表面,而小分子的无机溶解态亚铁还可继续进入细胞周质甚至细胞内膜氧化成矿。不同的培养条件(如缓冲液)和微生物种类也会影响成矿过程的反应速率从而影响矿物的结晶度。根据成矿的氧化剂不同,将成矿机制分为硝酸盐还原产物亚硝酸盐与亚铁反应的化学成矿机制与微生物利用铁氧化酶直接氧化亚铁的生物成矿机制。此外,硝酸盐还原耦合亚铁氧化成矿过程中所产生的细胞表面结壳现象,影响了不同微生物的新陈代谢过程,甚至会导致细胞死亡。而对于环境中的污染物,成矿过程可吸附和共沉淀多种重金属,从而降低重金属的污染,为治理环境污染提供了新思路。文章还分别对如何进行成矿过程的微观机制及其贡献的评估研究,以及如何更有效地利用成矿过程于环境污染治理中等问题进行了讨论和展望。
        As an important process of the global iron cycle, the Fe(Ⅱ) oxidation process driven by the NO_3--reducing Fe(Ⅱ)-oxidizing(NRFO) bacteria has a far-reaching significance for the environmental protection due to its ability of coupling organic pollutant degradation and heavy metal transformation under neutral and anoxic conditions. This review summarized the recent research on the Fe(Ⅲ) mineral production processes driven by NRFO bacteria in the presence of different Fe(Ⅱ) species,including its production mechanism and impacts on the bacteria and environment. In the Fe(Ⅱ) oxidation process, Fe(Ⅲ) mineral produced on the cell surface for the organic complexed Fe(Ⅱ) and solid state Fe(Ⅱ), while the inorganic Fe(Ⅱ) with low molecular may enter the periplasm and cytoplasm, resulting in the intracellular mineralization. Moreover, different culturing conditions(e.g.buffer) and types of microorganisms influenced the mineralization rates, and subsequently affected the crystallinity of the secondary minerals. According to the different oxidants of Fe(Ⅱ) oxidation to produce Fe(Ⅲ) minerals, there are two mineralization mechanisms in the Fe(Ⅱ) oxidation processes driven by NRFO, including chemical mineralization process via oxidation by the nitrite produced by microbial nitrate reduction and the biological mineralization process via oxidation by the Fe(Ⅱ) oxidoreductase in the NRFO. In addition, the cell encrustation occurred in the mineralization process can restrain the metabolism of bacteria, and even cause the death of cells. However, the produced Fe(Ⅲ) minerals can be used as effective adsorbents for heavy metals, and thus reducing the environmental toxicity, which offer a new strategy for environmental protection. The review also introduced some questions on how to study the mineralization process from a molecular level and disclose their different mineralization mechanisms,and look into the future on how it works more effectively in the natural environments.
引文
BENZ M,BRUNE A,SCHINK B,1998.Anaerobic and aerobic oxidation of ferrous iron at neutral pH by chemoheterotrophic nitrate-reducing bacteria[J].Archives of Microbiology,169(2):159-165.
    BORCH T,KRETZSCHMAR R,KAPPLER A,et al.,2010.Biogeochemical redox processes and their impact on contaminant dynamics[J].Environmental Science and Technology,44(1):15-23.
    CARLSON H K,CLARK I C,BLAZEWICZ S J,2013.Fe(Ⅱ)oxidation is an innate capability of nitrate-reducing bacteria that involves abiotic and biotic reactions[J].Journal of Bacteriology,195(14):3260-3268.
    CARLSON H K,CLARK I C,MELNYK R A,et al.,2012.Toward a mechanistic understanding of anaerobic nitrate-dependent iron oxidation:balancing electron uptake and detoxification[J].Frontiers in Microbiology,57(3):1-6.
    CHAKRABORTY A,PICARDAL F,2013a.Induction of nitrate-dependent Fe(Ⅱ)oxidation by Fe(Ⅱ)in Dechloromonas sp.strain UWNR4 and Acidovorax sp.strain 2AN[J].Applied Environmental Microbiology,79(2):748-752.
    CHAKRABORTY A,PICARDAL F,2013b.Neutrophilic,nitratedependent,Fe(Ⅱ)oxidation by a Dechloromonas species[J].World Journal of Microbiology&Biotechnology,29(4):617-623.
    CHAKRABORTY A,RODEN E E,SCHIEBER J,et al.,2011.Enhanced growth of Acidovorax sp.strain 2AN during nitrate-dependent Fe(Ⅱ)oxidation in batch and continuous-flow systems[J].Applied and Environmental Microbiology,77(24):8548-8556.
    CH?TELLIER X,M M WEST,ROSE J,et al.,2004.Characterization of iron-oxides formed by oxidation of ferrous ions in the presence of various bacterial species and inorganic ligands[J].Geomicrobiology Journal,21(2):99-112.
    CHAUDHURI S K,LACK J G,COATES J D,2001.Biogenic magnetite formation through anaerobic biooxidation of Fe(Ⅱ)[J].Applied and Environmental Microbiology,67(6):2844-2848.
    CHEN D D,LIU T X,LI X M,et al.,2018.Biological and chemical processes of microbially mediated nitrate-reducing Fe(Ⅱ)oxidation by Pseudogulbenkiania sp.strain 2002[J].Chemical Geology,476:59-69.
    DIPPON U,PANTKE C,PORSCH K,et al.,2012.Potential function of added minerals as nucleation sites and effect of humic substances on mineral formation by the nitrate-reducing Fe(Ⅱ)-oxidizer Acidovorax sp.BoFeN1[J].Environmental Science&Technology,46(12):6556-6565.
    EDWARDS K J,BOND P L,GIHRING T M,et al.,2000.An archaeal iron-oxidizing extreme acidophile important in acid mine drainage[J].Science,287(5459):1796-1799.
    ETIQUE M,JORAND F P,ZEGEYE A,et al.,2014.Abiotic process for Fe(Ⅱ)oxidation and green rust mineralization driven by a heterotrophic nitrate reducing bacteria(Klebsiella mobilis)[J].Environmental Science Technology,48(7):3742-3751.
    HE S M,BARCO R A,EMERSON D,et al.,2017.Comparative genomic analysis of neutrophilic iron(Ⅱ)oxidizer genomes for candidate genes in extracellular electron transfer[J].Frontiers in Microbiology,8:1-17.
    HEDRICH S,SCHLOMANN M,JOHNSON D B,2011.The iron-oxidizing proteobacteria[J].Microbiology,157(6):1551-1564.
    HEGLER F,SCHMIDT C,SCHWARZ H,et al.,2010.Does a low-pHmicroenvironment around phototrophic Fe(Ⅱ)-oxidizing bacteria prevent cell encrustation by Fe(Ⅲ)minerals?[J].FEMS Microbiology Ecology,74(3):592-600.
    HOHMANN C,WINKLER E,MORIN G,et al.,2010.Anaerobic Fe(Ⅱ)-oxidizing bacteria show as resistance and immobilize as during Fe(Ⅲ)mineral precipitation[J].Environmental Science&Technology,44(1):94-101.
    HU M,CHEN P,SUN W,et al.,2017.A novel organotrophic nitratereducing Fe(Ⅱ)-oxidizing bacterium isolated from paddy soil and draft genome sequencing indicate its metabolic versatility[J].RSCAdvances,7(89):56611-56620.
    ILBERT M,BONNEFOY V,2013.Insight into the evolution of the iron oxidation pathways[J].Biochimica et Biophysica Acta(BBA)-Bioenergetics,1827(2):161-175.
    JAMIESON J,PROMMER H,KAKSONEN A H,et al.,2018.Identifying and quantifying the intermediate processes during nitrate-dependent iron(Ⅱ)oxidation[J].Environmental Science&Technology,52(10):5771-5781.
    KAPPLER A,NEWMAN D K,2004.Formation of Fe(Ⅲ)-minerals by Fe(Ⅱ)-oxidizing photoautotrophic bacteria[J].Geochimica et Cosmochimica Acta,68(6):1217-1226.
    KAPPLER A,SCHINK B,NEWMAN D K,et al.,2005.Fe(Ⅲ)mineral formation and cell encrustation by nitrate-dependent Fe(Ⅱ)-oxidizers strain BoFeN1[J].Geobiology,3(4):235-245.
    KARIMIAN N,JOHNSTON S G,BURTON E D,2018.Iron and sulfur cycling in acid sulfate soil wetlands under dynamic redox conditions:Areview[J].Chemosphere,197:803-816.
    KLUEGLEIN N,PICARDAL F,ZEDDA M,et al.,2015.Oxidation of Fe(Ⅱ)-EDTA by nitrite and by two nitrate-reducing Fe(Ⅱ)-oxidizing Acidovorax strains[J].Geobiology,13(2):198-207.
    KLUEGLEIN N,ZEITVOGEL F,STIERHOF Y D,et al.,2014.Potential role of nitrite for abiotic Fe(Ⅱ)oxidation and cell encrustation during nitrate reduction by denitrifying bacteria[J].Applied and Environmental Microbiology,80(3):1051-1061.
    KOPF S H,HENNY C,NEWMAN D K,2013.Ligand-enhanced abiotic iron oxidation and the effects of chemical versus biological iron cycling in anoxic environments[J].Environmental Science&Technology,47(6):2602-2611.
    KUMARASWAMY R,SJOLLEMA K,KUENEN G,et al.,2006.Nitrate-dependent[Fe(Ⅱ)EDTA]2-oxidation by Paracoccus ferrooxidans sp.nov.,isolated from a denitrifying bioreactor[J].Systematic and Applied Microbiology,29(4):276-286.
    KUYPERS M M,MARCHANT H K,KARTAL B,2018.The microbial nitrogen-cycling network[J].Nature Reviews Microbiology,16(5):1-14.
    LARESE-CASANOVA P,HADERLEIN S B,KAPPLER A,2010.Biomineralization of lepidocrocite and goethite by nitrate-reducing Fe(Ⅱ)-oxidizing bacteria:Effect of pH,bicarbonate,phosphate,and humic acids[J].Geochimica et Cosmochimica Acta,74(13):3721-3734.
    LAUFER K,ROY H,JORGENSEN B B,et al.,2016.Evidence for the existence of autotrophic nitrate-reducing Fe(Ⅱ)-oxidizing bacteria in marine coastal sediment[J].Applied and Environmental Microbiology,82(20):6120-6131.
    LI B,TIAN C,ZHANG D,et al.,2014.Anaerobic nitrate-dependent iron(Ⅱ)oxidation by a novel autotrophic bacterium,Citrobacter freundii Strain PXL1[J].Geomicrobiol Journal,31(2):138-144.
    LI S,LI X M,LI F B,2017a.Fe(Ⅱ)oxidation and nitrate reduction by a denitrifying bacterium,Pseudomonas stutzeri LS-2,isolated from paddy soil[J].Journal of Soils and Sediments,18(4):1668-1678.
    LI Y F,LONG X X,CHONG Y X,et al.,2017b.Characterization of the cell-Fe mineral aggregate from nitrogen removal employing ferrous and its adsorption features to heavy metal[J].Journal of Cleaner Production,156:538-548.
    LIU T X,CHEN D D,LUO X B,et al.,2018.Microbially mediated nitrate-reducing Fe(Ⅱ)oxidation:quantification of chemodenitrification and biological reactions[J].Geochimica et Cosmochimica Acta:1-19.
    LLIROS M,GARCIA-ARMISEN T,DARCHAMBEAU F,et al.,2015.Pelagic photoferrotrophy and iron cycling in a modern ferruginous basin[J].Science Reports,5:1-8.
    LUEDER U,DRUSCHEL G,EMERSON D,et al.,2018.Quantitative analysis of O2 and Fe2+profiles in gradient tubes for cultivation of microaerophilic iron(Ⅱ)-oxidizing bacteria[J].FEMS Microbiology Ecology,94(2):1-15.
    MATTES A,GOULD D,TAUPP M,et al.,2013.A Novel autotrophic bacterium isolated from an engineered wetland system links nitrate-coupled iron oxidation to the removal of As,Zn and S[J].Water,Air,&Soil Pollution,224:1-15.
    MELTON E D,SCHMIDT C,KAPPLER A,2012.Microbial iron(Ⅱ)oxidation in littoral freshwater lake sediment:the potential for competition between phototrophic vs.nitrate-reducing iron(Ⅱ)-oxidizers[J].Frontiers in Microbiology,197(3):1-12.
    MELTON E D,SWANNER E D,BEHRENS S,et al.,2014.The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle[J].Nature Review Microbiology,12(12):1-12.
    MIOT J,BENZERARA K,MORIN G,et al.,2008.Iron biomineralization by anaerobic neutrophilic iron-oxidizing bacteria[J].Geochimica et Cosmochimica Acta,73(3):696-711.
    MIOT J,BENZERARA K,MORIN G,et al.,2009.Transformation of vivianite by anaerobic nitrate-reducing iron-oxidizing bacteria[J].Geobiology,7(3):373-384.
    MIOT J,ETIQUE M,2016.Formation and transformation of iron-bearing minerals by iron(Ⅱ)-oxidizing and iron(Ⅲ)-reducing bacteria[M].//Iron Oxides:from nature to materials and from formation to applications.Wiley-VCH Verlag GmbH&Co.KGaA:53-97.
    MORENO-VIVIáN,CABELLO P,MARTíNEZ-LUQUE M,1999.Prokaryotic nitrate reduction:molecular properties and functional distinction among bacterial nitrate reductases[J].Journal of Bacteriology,181(21):6573-6584.
    MUEHE E M,GERHARDT S,SCHINK B,et al.,2009.Ecophysiology and the energetic benefit of mixotrophic Fe(Ⅱ)oxidation by various strains of nitrate-reducing bacteria[J].FEMS Microbiology Ecology,70(3):335-343.
    NORDHOFF M,TOMINSKI C,HALAMA M,et al.,2017.Insights into nitrate-reducing Fe(Ⅱ)oxidation mechanisms through analysis of cell-mineral associations,cell encrustation,and mineralogy in the chemolithoautotrophic enrichment Culture KS[J].Applied Environmental Microbiology,83(13):1-19.
    PANTKE C,OBST M,BENZERARA K,et al.,2012.Green rust formation during Fe(Ⅱ)oxidation by the nitrate-reducing Acidovorax sp.strain BoFeN1[J].Environment Science Technology,46(3):1439-1446.
    PEDROT M,LE BOUDEC A,DAVRANCHE M,et al.,2011.How does organic matter constrain the nature,size and availability of Fe nanoparticles for biological reduction?[J].Journal of Colloid Interface Science,359(1):75-85.
    PENG C,SUNDMAN A,BRYCE C,et al.,2018.Oxidation of Fe(Ⅱ)-organic matter complexes in the presence of the mixotrophic nitrate-reducing Fe(Ⅱ)-oxidizing bacterium Acidovorax sp.BoFeN1[J].Environmental Science Technology,52(10):5753-5763.
    PICARDAL F.2012.Abiotic and microbial interactions during anaerobic transformations of Fe(Ⅱ)and NOx-[J].Frontiers in Microbiology,112(3):1-7.
    POSTH N R,HUELIN S,KONHAUSER KO,et al.,2010,Size,density and composition of cell-mineral aggregates formed during anoxygenic phototrophic Fe(Ⅱ)oxidation:Impact on modern and ancient environments[J].Geochimica et Cosmochimica Acta,74(12):3476-3493.
    RAKSHIT S,MATOCHA C J,COYNE M S,et al.,2016.Nitrite reduction by Fe(Ⅱ)associated with kaolinite[J].International Journal of Environmental Science&Technology,13(5):1329-1334.
    SCHAEDLER F,LOCKWOOD C,LUEDER U,et al.,2018.Microbially mediated coupling of Fe and N cycles by nitrate-reducing Fe(Ⅱ)-oxidizing bacteria in littoral freshwater sediments[J].Applied Environmental Microbiology,84(2):1-14.
    SCHMID G,ZEITVOGEL F,HAO L,et al.,2014a.3-D analysis of bacterial cell-(iron)mineral aggregates formed during Fe(Ⅱ)oxidation by the nitrate-reducing Acidovorax sp.strain BoFeN1 using complementary microscopy tomography approaches[J].Geobiology,12(4):340-361.
    SCHMID G,ZEITVOGEL F,HAO L,et al.,2014b.Synchrotron-based chemical nano-tomography of microbial cell-mineral aggregates in their natural,hydrated state[J].Microscopy and Microanalysis,20(2):531-536.
    SENKO J M,DEWERS T A,KRUMHOLZ L R,2005.Effect of oxidation rate and Fe(Ⅱ)state on microbial nitrate-dependent Fe(Ⅲ)mineral formation[J].Applied Environmental Microbiology,71(11):7172-7127.
    SOROKINA A Y,CHERNOUSOVA E Y,DUBININA G A,2012a.Hoeflea siderophilasp.nov.,a new neutrophilic iron-oxidizing bacterium[J].Microbiology,81(1):59-66.
    SOROKINA A Y,CHERNOUSOVA E Y,DUBININA G A,2012b.Ferrovibrio denitrificans gen.nov.sp.nov.a novel neutrophilic facultative anaerobic Fe(Ⅱ)-oxidizing bacterium[J].Fems Microbiology Letters,335(1):19-25.
    STRAUB K L,BENZ M,SCHINK B,et al.,1996.Anaerobic,nitrate-dependent microbial oxidation of ferrous iron[J].Applied and Environmental Microbiology,62(4):1458-1460.
    STRAUB K L,SCH?NHUBER W A,BUCHHOLZ-CLEVEN B E E,et al.,2004.Diversity of ferrous iron-oxidizing,nitrate-reducing bacteria and their involvement in oxygen-independent iron cycling[J].Geomicrobiology Journal,21(6):371-378.
    TAGLIABUE A,BOWIE A R,BOYD P W,et al.,2017.The integral role of iron in ocean biogeochemistry[J].Nature,543(7643):51-59.
    WANG X,LIU T,LI F.et al.,2018.Effects of simultaneous application of ferrous iron and nitrate on arsenic accumulation in rice grown in contaminated paddy soil[J].Earth and Space Chemistry,2(2):103-111.
    WEBER K A,POLLOCK J,COLE K A,et al.,2006.Anaerobic nitrate-dependent iron(Ⅱ)bio-oxidation by a novel lithoautotrophic betaproteobacterium,Strain 2002[J].Applied&Environmental Microbiology,72(1):689-694.
    WEBER K A,HEDRICK D B,PEACOCK A D,et al.,2009.Physiological and taxonomic description of the novel autotrophic,metal oxidizing bacterium,Pseudogulbenkiania sp.strain 2002[J].Applied and Environmental Microbiology,83(3):555-565.
    WU W,SWANNER E D,HAO L,et al.,2014.Characterization of the physiology and cell-mineral interactions of the marine anoxygenic phototrophic Fe(Ⅱ)oxidizer Rhodovulum iodosum--implications for Precambrian Fe(Ⅱ)oxidation[J].FEMS Microbiology Ecology,88(3):503-515.
    XIU W,GUO H M,SHEN J X,et al.,2016.Stimulation of Fe(Ⅱ)oxidation,biogenic lepidocrocite formation,and arsenic immobilization by sp.strain 2002[J].Environmental Science&Technology,50(12):6449-6458.
    YAN R,KAPPLER A,PEIFFER S,2015.Interference of nitrite with pyrite under acidic conditions:implications for studies of chemolithotrophic denitrification[J].Environmental Science Technology,49(19):11403-11410.
    ZEITVOGEL F,BURKHARDT C J,SCHROEPPEL B,et al.,2017.Comparison of preparation methods of bacterial cell-mineral aggregates for SEM imaging and analysis using the model system of Acidovorax sp.BoFeN1[J].Geomicrobiology Journal,34(4):317-327.
    ZHANG H,WANG H,YANG K,et al.,2015.Autotrophic denitrification with anaerobic Fe2+oxidation by a novel Pseudomonas sp.W1[J].Water Science&Technology,71(7):1081-1087.
    ZHAO L,DONG H,KUKKADAPU R et al.,2013.Biological oxidation of Fe(Ⅱ)in reduced nontronite coupled with nitrate reduction by Pseudogulbenkiania,sp.Strain 2002[J].Geochimica et Cosmochimica Acta,43(43):231-247.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700