用户名: 密码: 验证码:
漓江水陆交错带土壤理化性质及其分布特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Soil physico-chemical properties and distribution characteristics in an aquatic-terrestrial ecotone of the Lijiang River, southwest China
  • 作者:梁士楚 ; 苑晓霞 ; 卢晓明 ; 许桂芬 ; 覃艳 ; 姜勇
  • 英文作者:LIANG Shichu;YUAN Xiaoxia;LU Xiaoming;XU Guifen;QIN Yan;JIANG Yong;Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection(Guangxi Normal University),Ministry of Education;College of Life Science,Guangxi Normal University;
  • 关键词:水陆交错带 ; 土壤理化性质 ; 相关性分析 ; 主成分分析
  • 英文关键词:aquatic-terrestrial ecotone;;soil physico-chemical properties;;correlation analysis;;principal component analysis
  • 中文刊名:生态学报
  • 英文刊名:Acta Ecologica Sinica
  • 机构:广西师范珍稀濒危动植物生态与环境保护教育部重点实验室;广西师范大学生命科学学院;
  • 出版日期:2019-01-18 09:24
  • 出版单位:生态学报
  • 年:2019
  • 期:08
  • 基金:广西自然科学青年基金项目(2016GXNSFBA380030);; 广西壮族自治区中青年教师基础能力提升项目(ky2016YB062);; 2017年度自治区级大学生创新创业训练计划项目(201411000124);; 2017年度广西高校优秀教师出国留学项目
  • 语种:中文;
  • 页:112-121
  • 页数:10
  • CN:11-2031/Q
  • ISSN:1000-0933
  • 分类号:S153
摘要
水陆交错带是水生生态系统与陆地生态系统之间的过渡带,是一种典型的生态交错区,承载着能量流动、物质循环和信息交换的重要作用。土壤作为水陆交错带系统的重要组成部分,是水陆交错带功能实现的基础之一。鉴于此,以桂林漓江水陆交错带纵向梯度(上游、中游、下游)不同植被覆盖条件下的土壤为研究对象,采用野外取样调查、实验分析与统计检验相结合,系统的分析了土壤理化性质及其分布特征,旨在为该区域退化生态系统恢复与重建提供依据。结果表明:11个土壤理化性质,其中5个指标(土壤含水量、全氮、全磷、速效氮和速效钾)在上游、中游和下游均差异性显著。不同梯度下的土壤理化性质的相关性及相关性大小也不尽相同,但在总体上存在一些较相似的变化规律,如上游、中游和下游的土壤容重和孔隙度均呈现显著负相关,土壤全磷和有机质与多数土壤化学性质呈显著正相关;土壤含水量在下游与多数土壤化学性质均显著相关,但在上游仅与土壤全磷显著负相关。PCA主成分分析表明,土壤容重、土壤孔隙度和土壤全磷含量的贡献均大于其他环境因子的平均贡献率,体现了它们是影响漓江水陆交错带土壤理化性质的重要环境因子。
        The aquatic-terrestrial ecotone is a transitional zone between aquatic and terrestrial ecosystems. It is a typical eco-transitional zone and plays an important role in energy flows, material circulation, and information transformation. Soil, as an important part of the aquatic-terrestrial ecotone, is one of the basic functional aspects of an aquatic-terrestrial ecotone. This study aimed to provide scientific guidance for the restoration of a degraded aquatic-terrestrial ecotone. To do so, a typical area of the aquatic-terrestrial ecotone of the Lijiang River, Guilin, southwest China were selected as the sampling site. We measured eleven soil physico-chemical properties, including the following soil chemical properties: soil organic matter(SOM), total nitrogen(TN), total phosphorus(TP), total potassium(TK), available nitrogen(AN), available phosphorus(AP), available potassium(AK), and soil pH, as well as the following soil physical properties: soil water content(SWC), bulk density(BD), and soil porosity(PS). We analyzed the relationships between the soil physico-chemical properties of different distributed community types by employing methods of field investigation and experimental testing using basic statistics including One-way ANOVA, the Tukey-Kramer HSD test, and Principal Component Analysis(PCA) across a longitudinal gradient(upstream, midstream, and downstream) in an aquatic-terrestrial ecotone of the Lijiang River. The results showed that SWC, TN, TP, AN, and AK have significant differences across the longitudinal gradient(upstream, midstream, and downstream) of aquatic-terrestrial ecotones. Although the correlations and the intensity of the correlations between soil physico-chemical properties across the gradient were different, there were some similarities. Of the soil physical properties, bulk density and soil porosity are significantly negatively correlated, while TP and SOM have a significant positive correlation with most of the soil chemical properties across the longitudinal gradient of the aquatic-terrestrial ecotone. Soil water content was significantly positive correlated with most of the soil chemical properties in the downstream region, but only had a significantly negative correlation with TP in the upstream region. A principal component analysis indicated that soil bulk density, soil porosity, and soil total phosphorus contributed more than the other environmental factors to PCA1 and PCA2, which were important predictors of the distribution of different community types in the aquatic-terrestrial ecotone of the Lijiang River.
引文
[1] Díaz S,Lavorel S,de Bello F,Quétier F,Grigulis K,Robson T M.Incorporating plant functional diversity effects in ecosystem service assessments.Proceedings of the National Academy of Sciences of the United States of America,2007,104(52):20684- 20689.
    [2] Lavorel S,Grigulis K.How fundamental plant functional trait relationships scale-up to trade-offs and synergies in ecosystem services.Journal of Ecology,2012,100(1):128- 140.
    [3] McGill B J,Enquist B J,Weiher E,Westoby M.Rebuilding community ecology from functional traits.Trends in Ecology & Evolution,2006,21(4):178- 185.
    [4] 郭怀成,黄凯,刘永,郁亚娟.河岸带生态系统管理研究概念框架及其关键问题.地理研究,2007,26(4):789- 798.
    [5] 郭二辉,孙然好,陈利顶.河岸植被缓冲带主要生态服务功能研究的现状与展望.生态学杂志,2011,30(8):1830- 1837.
    [6] Critchley C N R,Chambers B J,Fowbert J A,Sanderson R A,Bhogal A,Rose S C.Association between lowland grassland plant communities and soil properties.Biological Conservation,2002,105(2):199- 215.
    [7] Stella J C,Rodríguez-Gonzalez P M,Dufour S,Bendix J.Riparian vegetation research in Mediterranean-climate regions:common patterns,ecological processes,and considerations for management.Hydrobiologia,2013,719(1):291- 315.
    [8] Capon S J,Chambers L E,Mac Nally R,Naiman R J,Davies P,Marshall N,Pittock J,Reid M,Capon T,Douglas M,Catford J,Baldwin D S,Stewardson M,Roberts J,Parsons M,Williams S E.Riparian ecosystems in the 21st Century:hotspots for climate change adaptation?Ecosystems,2013,16(3):359- 381.
    [9] Hale R,Reich P,Daniel T,Lake P S,Cavagnaro T R.Scales that matter:guiding effective monitoring of soil properties in restored riparian zones.Geoderma,2014,228- 229:173- 181.
    [10] 李青山,王冬梅,信忠保,李扬,任远.漓江水陆交错带典型立地根系分布与土壤性质的关系.生态学报,2014,34(8):2003- 2011.
    [11] 杨文彬,耿玉清,王冬梅.漓江水陆交错带不同植被类型的土壤酶活性.生态学报,2015,35(14):4604- 4612.
    [12] 李扬,王冬梅,信忠保,王晶,任远,李青山.漓江水陆交错带不同淹没区植物多样性与土壤特征.生态学报,2015,35(15):5121- 5130.
    [13] 李青山,王冬梅,信忠保,李扬,任远.漓江水陆交错带典型灌木群落根系分布与土壤养分的关系.生态学报,2015,35(15):5104- 5109.
    [14] 郭玉珊.EN- 1固化剂对土壤理化及生物学性质的影响[D].北京:北京林业大学,2015.
    [15] 刘金荣,冯红,俞秀兰,宋桂金,叶青.历史上漓江(桂江)水系名称的变化浅议.中国岩溶,2003,22(1):77- 82.
    [16] 韩耀全,周解,吴祥庆.漓江的自然地理与水质调查.广西水产科技,2007,(2):8- 16.
    [17] 杨文彬.漓江水陆交错带土壤酶活性的研究[D].北京:北京林业大学,2014.
    [18] 禹娟红,包振国,王秉忠,刘玲玲,车树理.不同植被恢复模式对土壤理化性质的影响.人民黄河,2015,37(2):94- 98,103- 103.
    [19] 文璐,刘晶岚,习妍,张振明,王小平,陈俊崎,王春能.北京地区重要古树土壤物理性状分析.水土保持研究,2011,18(5):175- 178.
    [20] Borcard D,Gillet F,Legendre P.数量生态学.赖江山,译.北京:高等教育出版社,2014:107- 113.
    [21] 李艳,李鹏,赵忠,张良恩,孙楠.退耕地植被恢复演替的生态环境效应研究进展.西北农林科技大学学报:自然科学版,2007,35(8):155- 159.
    [22] 何其华,何永华,包维楷.岷江上游干旱河谷典型阳坡海拔梯度上土壤水分动态.应用与环境生物学报,2004,10(1):68- 74.
    [23] 罗琰,苏德荣,吕世海,布和,贺晶,谢晶杰.辉河湿地河岸带土壤养分与酶活性特征及相关性研究.土壤,2017,49(1):203- 207.
    [24] 王琼.牟平海岸带土壤理化性质分析.安徽农业科学,2015,43(28):95- 97,227- 227.
    [25] 陈春瑜,和树庄,胡斌,吕文龙.土地利用方式对滇池流域土壤养分时空分布的影响.应用生态学报,2012,23(10):2677- 2684.
    [26] 李冬林,韩丽,阮宏华,张纪林.秦淮河河岸带土壤理化性质分析.南京林业大学学报:自然科学版,2008,32(4):17- 22.
    [27] 葛晓改,肖文发,曾立雄,黄志霖,付甜,封晓辉.不同林龄马尾松凋落物基质质量与土壤养分的关系.生态学报,2012,32(3):852- 862.
    [28] 郦威,卢振兰,孔维静,张远.太子河河岸带土壤理化性质特征及其与环境因子的关系.生态科学,2013,32(1):90- 97.
    [29] 赵少华,宇万太,张璐,沈善敏,马强.土壤有机磷研究进展.应用生态学报,2004,15(11):2189- 2194.
    [30] 王淑平,周广胜,吕育财,邹建军.中国东北样带(NECT)土壤碳、氮、磷的梯度分布及其与气候因子的关系.植物生态学报,2002,26(5):513- 517.
    [31] 侯晓丽,薛晔,薛立,卢广超,邵仪若.不同坡位杉木林土壤物理性质和养分的时空变化.安徽农业大学学报,2013,40(5):721- 725.
    [32] 葛晓改,肖文发,曾立雄,黄志霖,付甜,封晓辉.不同林龄马尾松凋落物基质质量与土壤养分的关系.生态学报,2012,32(3):852- 862.
    [33] 何加林,曹洪麟,张燕婷,叶万辉,李武军,吴林芳.广西木论喀斯特森林土壤养分水平与植被及地形的关系.热带亚热带植物学报,2009,17(5):502- 509.
    [34] 杨春璐,马溪平,李法云,侯伟,李悦,王杰,孔维静,范庆锋.海城河河岸带土壤理化性质分析.生态科学,2010,29(3):262- 267.
    [35] 吴则焰,林文雄,陈志芳,刘金福,方长旬,张志兴,吴林坤,陈婷.武夷山不同海拔植被带土壤微生物PLFA分析.林业科学,2014,50(7):105- 112.
    [36] 林大仪.土壤学.北京:中国林业出版社,2002:244- 245.
    [37] Hartley A M,House W A,Leadbeater B S C,Callow M E.The use of microelectrodes to study the precipitation of calcite upon algal biofilms.Journal of Colloid and Interface Science,1996,183(2):498- 505.
    [38] 祖元刚,李冉,王文杰,苏冬雪,王莹,邱岭.我国东北土壤有机碳、无机碳含量与土壤理化性质的相关性.生态学报,2011,31(18):5207- 5216.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700