用户名: 密码: 验证码:
芦岭煤田微生物群落结构和生物成因气的产甲烷类型研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Microbial community and the type of methanogenesis associated with biogenic gas in Luling Coalfield, China
  • 作者:刘亚飞 ; 王波 ; 张洪勋 ; 余志晟
  • 英文作者:Yafei Liu;Bobo Wang;Hongxun Zhang;Zhisheng Yu;College of Resources and Environment, University of Chinese Academy of Sciences;
  • 关键词:煤层气 ; 乙酸营养型 ; 产甲烷菌
  • 英文关键词:coal bed methane;;acetoclastic methanogenesis;;methanogens
  • 中文刊名:微生物学报
  • 英文刊名:Acta Microbiologica Sinica
  • 机构:中国科学院大学资源与环境学院;
  • 出版日期:2019-03-13 16:01
  • 出版单位:微生物学报
  • 年:2019
  • 期:06
  • 基金:国家重点研发计划(Y6190131A9)~~
  • 语种:中文;
  • 页:202-215
  • 页数:14
  • CN:11-1995/Q
  • ISSN:0001-6209
  • 分类号:TD712;Q938
摘要
【目的】揭示芦岭煤田微生物群落组成,并分析其潜在的产甲烷类型及产甲烷途径。【方法】采集芦岭煤田的煤层气样品和产出水样品,分别分析样品的地球化学性质特征;利用Illumina HiSeq高通量测序技术分析产出水中的微生物群落结构;采用添加不同底物的厌氧培养实验进一步证实芦岭煤田生物成因气的产甲烷类型。【结果】该地区煤层气为生物成因和热成因的混合成因气;古菌16S rRNA基因分析表明在产出水中含有乙酸营养型、氢营养型和甲基营养型的产甲烷菌。丰度较高的细菌具有降解煤中芳香族和纤维素衍生化合物的潜力。厌氧富集培养结果表明,添加乙酸盐、甲酸盐、H2+CO2为底物的矿井水样均有明显的甲烷产生。【结论】芦岭煤田具有丰富的生物多样性,该地区同时存在三种产甲烷类型。本研究为利用微生物技术提高煤层气的采收率,实现煤层气的可持续开采提供科学依据。
        [Objective] The aim of this study was to study microbial community structures and type of methanogenesis associated with biogenic gas in Luling Coalfield, China. [Methods] We detected microbial distribution of the formation water by high-throughput pyrosequencing and bioinformatic analysis. Anaerobic culture was also used to verify the type of methanogenesis. [Results] The composition and stable isotopic ratios of gas samples implied a mixed biogenic and thermogenic methane. Archaeal 16 S rRNA gene analysis revealed the survival of the acetoclastic,methylotrophic, and hydrogenotrophic methanogen in the produced water. Most detected bacteria could degrade aromatic and cellulose-derived compounds in coal. The activity and potential of methanogens of the related bacteria were confirmed by the obvious methane production in enrichments supplemented with acetate, formate or H2+CO2.[Conclusion] Acetoclastic and methylotrophic as well as hydrogenotrophic methanogenesis was responsible for the methanogenesis in Luling coalfield. These results would provide theoretical basis to improve the coal bed methane production using microbial technology and realize the sustainable exploitation of coal bed methane.
引文
[1]Thielemann T,Cramer B,Schippers A.Coalbed methane in the Ruhr Basin,Germany:a renewable energy resource?Organic Geochemistry,2004,35(11/12):1537-1549.
    [2]Faiz M,Hendry P.Significance of microbial activity in Australian coal bed methane reservoirs-a review.Bulletin of Canadian Petroleum Geology,2006,54(3):261-272.
    [3]Kotarba MJ.Composition and origin of coalbed gases in the Upper Silesian and Lublin basins,Poland.Organic Geochemistry,2001,32(1):163-180.
    [4]Shimizu S,Akiyama M,Naganuma T,Fujioka M,Nako M,Ishijima Y.Molecular characterization of microbial communities in deep coal seam groundwater of northern Japan.Geobiology,2007,5(4):423-433.
    [5]Li DM,Hendry P,Faiz M.A survey of the microbial populations in some Australian coalbed methane reservoirs.International Journal of Coal Geology,2008,76(1/2):14-24.
    [6]Midgley DJ,Hendry P,Pinetown KL,Fuentes D,Gong S,Mitchell DL,Faiz M.Characterisation of a microbial community associated with a deep,coal seam methane reservoir in the Gippsland Basin,Australia.International Journal of Coal Geology,2010,82(3/4):232-239.
    [7]Str?po?D,Picardal FW,Turich C,Schaperdoth I,Macalady JL,Lipp JS,Lin YS,Ertefai TF,Schubotz F,Hinrichs KU,Mastalerz M,Schimmelmann A.Methane-producing microbial community in a coal bed of the Illinois Basin.Applied and Environmental Microbiology,2008,74(8):2424-2432.
    [8]Xiong JB,Liu YQ,Lin XG,Zhang HY,Zeng J,Hou JZ,Yang YP,Yao TD,Knight R,Chu HY.Geographic distance and pH drive bacterial distribution in alkaline lake sediments across Tibetan Plateau.Environmental Microbiology,2012,14(9):2457-2466.
    [9]White TJ,Bruns T,Lee S,Taylor J.Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics//Innis MA,Gelfand DH,Sninsky JJ,White TJ.PCR Protocols:A Guide to Methods and Applications.San Diego:Academic Press,1990:315-322.
    [10]Bolger AM,Lohse M,Usadel B.Trimmomatic:a flexible trimmer for Illumina sequence data.Bioinformatics,2014,30(15):2114-2120.
    [11]Mago?T,Salzberg SL.FLASH:fast length adjustment of short reads to improve genome assemblies.Bioinformatics,2011,27(21):2957-2963.
    [12]Caporaso JG,Kuczynski J,Stombaugh J,Bittinger K,Bushman FD,Costello EK,Fierer N,Pe?a AG,Goodrich JK,Gordon JI,Huttley GA,Kelley ST,Knights D,Koenig JE,Ley RE,Lozupone CA,McDonald D,Muegge BD,Pirrung M,Reeder J,Sevinsky JR,Turnbaugh PJ,Walters WA,Widmann J,Yatsunenko T,Zaneveld J,Knight R.QIIMEallows analysis of high-throughput community sequencing data.Nature Methods,2010,7(5):335-336.
    [13]Lenhart K,Keppler F.Investigating CH4 production in an oxic plant-soil system-a new approach combining isotopic labelling(13C)and inhibitors//Proceedings of the 19th EGUGeneral Assembly Conference.Vienna,Austria:EGU,2017:4115.
    [14]Gunsalus RP,Romesser JA,Wolfe RS.Preparation of coenzyme M analogs and their activity in the methyl coenzyme M reductase system of Methanobacterium thermoautotrophicum.Biochemistry,1978,17(12):2374-2377.
    [15]Bates BL,McIntosh JC,Lohse KA,Brooks PD.Influence of groundwater flowpaths,residence times and nutrients on the extent of microbial methanogenesis in coal beds:Powder River Basin,USA.Chemical Geology,2011,284(1/2):45-61.
    [16]Str?po?D,Mastalerz M,Dawson K,Macalady J,Callaghan AV,Wawrik B,Turich C,Ashby M.Biogeochemistry of microbial coal-bed methane.Annual Review of Earth and Planetary Sciences,2011,39:617-656.
    [17]Paster BJ,Canale-Parola E.Physiological diversity of rumen spirochetes.Applied and Environmental Microbiology,1982,43(3):686-693.
    [18]Li YY,Chen LQ,Wen HY,Zhou TJ,Zhang T.Pyrosequencing-based assessment of bacterial community structure in mine soils affected by mining subsidence.International Journal of Mining Science and Technology,2014,24(5):701-706.
    [19]Singh DN,Tripathi AK.Coal induced production of a rhamnolipid biosurfactant by Pseudomonas stutzeri,isolated from the formation water of Jharia coalbed.Bioresource Technology,2013,128:215-221.
    [20]Beckmann S,Lueders T,Krüger M,Von Netzer F,Engelen B,Cypionka H.Acetogens and acetoclastic Methanosarcinales govern methane formation in abandoned coal mines.Applied and Environmental Microbiology,2011,77(11):3749-3756.
    [21]Lambo AJ,Patel TR.Cometabolic degradation of polychlorinated biphenyls at low temperature by psychrotolerant bacterium Hydrogenophaga sp.IA3-A.Current Microbiology,2006,53(1):48-52.
    [22]Chakraborty R,O’Connor SM,Chan E,Coates JD.Anaerobic degradation of benzene,toluene,ethylbenzene,and xylene compounds by Dechloromonas strain RCB.Applied and Environmental Microbiology,2005,71(12):8649-8655.
    [23]Ortiz-Alvarez R,Casamayor EO.High occurrence of Pacearchaeota and Woesearchaeota(Archaea superphylum DPANN)in the surface waters of oligotrophic high-altitude lakes.Environmental Microbiology Reports,2016,8(2):210-217.
    [24]Butinar L,Santos S,Spencer-Martins I,Oren A,Gunde-Cimerman N.Yeast diversity in hypersaline habitats.FEMS Microbiology Letters,2005,244(2):229-234.
    [25]Triadó-Margarit X,Casamayor EO.High genetic diversity and novelty in planktonic protists inhabiting inland and coastal high salinity water bodies.FEMS Microbiology Ecology,2013,85(1):27-36.
    [26]Edgcomb VP,Bernhard JM,Summons RE,Orsi W,Beaudoin D,Visscher PT.Active eukaryotes in microbialites from Highborne Cay,Bahamas,and Hamelin Pool(Shark Bay),Australia.ISME Journal,2014,8(2):418-429.
    [27]Gilbert Y,Duchaine C.Bioaerosols in industrial environments:a review.Canadian Journal of Civil Engineering,2009,36(12):1873-1886.
    [28]Little B,Wagner P,Mansfeld F.Microbiologically influenced corrosion of metals and alloys.International Materials Reviews,1991,36(1):253-272.
    [29]Juzeliūnas E,Ramanauskas R,Lugauskas A,Leinartas K,Samulevi?ien?M,Sudavi?ius A,Ju?k?nas R.Microbially influenced corrosion of zinc and aluminium-Two-year subjection to influence of Aspergillus niger.Corrosion Science,2007,49(11):4098-4112.
    [30]Chen R,Luo YH,Chen JX,Zhang Y,Wen LL,Shi LD,Tang YN,Rittmann BE,Zheng P,Zhao HP.Evolution of the microbial community of the biofilm in a methane-based membrane biofilm reactor reducing multiple electron acceptors.Environmental Science and Pollution Research,2016,23(10):9540-9548.
    [31]Lee SY,Park JH,Jang SH,Nielsen LK,Kim J,Jung KS.Fermentative butanol production by clostridia.Biotechnology and Bioengineering,2008,101(2):209-228.
    [32]Winderl C,Penning H,von Netzer F,Meckenstock RU,Lueders T.DNA-SIP identifies sulfate-reducing Clostridia as important toluene degraders in tar-oil-contaminated aquifer sediment.ISME Journal,2010,4(10):1314-1325.
    [33]Paarup M,Friedrich MW,Tindall BJ,Finster K.Characterization of the psychrotolerant acetogen strain SyrA5 and the emended description of the species Acetobacterium carbinolicum.Antonie van Leeuwenhoek,2006,89(1):55-69.
    [34]Winter J,Wolfe RS.Complete degradation of carbohydrate to carbon dioxide and methane by syntrophic cultures of Acetobacterium woodii and Methanosarcina barkeri.Archives of Microbiology,1979,121(1):97-102.
    [35]Shimizu S,Upadhye R,Ishijima Y,Naganuma T.Methanosarcina horonobensis sp.nov.,a methanogenic archaeon isolated from a deep subsurface Miocene formation.International Journal of Systematic and Evolutionary Microbiology,2011,61(10):2503-2507.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700