用户名: 密码: 验证码:
青海省森林细根生物量及其影响因子
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Forest biomass and its influencing factors in Qinghai Province
  • 作者:唐立涛 ; 字洪标 ; 胡雷 ; 阿的鲁骥 ; 王长庭
  • 英文作者:TANG Litao;ZI Hongbiao;HU Lei;ADE Luji;WANG Changting;Institute of Qinghai-tibetan Plateau, Southwest Minzu University;
  • 关键词:青海省 ; 细根生物量 ; 海拔 ; 林分类型 ; 土壤理化性质
  • 英文关键词:Qinghai Province;;fine root biomass;;elevation gradient;;forest species;;soil physical and chemical properties
  • 中文刊名:生态学报
  • 英文刊名:Acta Ecologica Sinica
  • 机构:西南民族大学青藏高原研究院;
  • 出版日期:2019-03-08 16:15
  • 出版单位:生态学报
  • 年:2019
  • 期:10
  • 基金:中国科学院战略性先导科技专项“应对气候变化的碳收支认证及相关问题”(XDA05050207);; 四川省重点研发项目(2018SZ0333);; 中央高校基本科研业务费专项资金(2018NZD13);; 西南民族大学研究生“创新型科研项目”重点项目(CX2018SZ111)
  • 语种:中文;
  • 页:281-290
  • 页数:10
  • CN:11-2031/Q
  • ISSN:1000-0933
  • 分类号:S718.5
摘要
细根是植物吸收水分和养分的主要器官。全球变暖背景下,研究森林细根生物量及其环境因子的变化对生态系统碳平衡、碳收支及其贡献率具有重要意义。采用土钻法和室内分析法对青海省森林6个海拔梯度上5种林分类型的细根生物量和土壤理化性质进行测定,并分析了与环境因子之间的相互关系。结果表明:(1)青海省森林0—40 cm土层总细根生物量平均为8.50 t/hm~2,随着海拔梯度的增加先降低后升高,不同海拔梯度细根生物量差异显著(P<0.05),最大值出现在2100—2400 m处。(2)5种林分0—40 cm土层总细根生物量为:白桦<白杨<云杉<圆柏<山杨,不同林分间细根生物量差异不显著。(3)细根垂直分布随土层深度增加而减少,且70%的细根集中在表层(0—20 cm)。(4)土壤容重深层(20—40 cm)显著大于表层(P<0.05),并随海拔梯度逐步增加,且林分间差异较大。(5)全碳(Total carbon, TC)、全氮(Total nitrogen, TN)、全磷(Total phosphorus, TP)含量表层显著高于深层。TC、TN随海拔升高先增后降低,TP则随海拔逐步降低。不同林分间土壤养分差异较明显。(6)结构方程模型分析得到海拔、土层、容重直接影响细根生物量,细根生物量直接影响土壤养分。林分类型通过土壤容重间接影响细根生物量。因此,林分和海拔通过影响土壤微环境而影响到细根生物量及其空间分布格局。
        Fine roots are the main organs that plants use to absorb water and nutrients. In the context of global warming, it is of great significance to study the biomass of fine roots and the environmental factors affecting carbon balance, carbon budget, and contribution rate of the ecosystem. In this study, the soil drilling method and indoor analysis were used to determine the fine root biomass and soil physical and chemical properties of 5 species in forest system on 6 elevations in Qinghai Province. The relationships between fine root biomass and environmental factors were further analyzed. The results showed that:(1) In Qinghai Province, the average of the total fine root biomass was 8.50 t/hm~2 in 0—40 cm soil depth. With the altitude increase along the gradient, fine root biomass decreased first and then increased. There were significant differences in the biomass of fine roots among different altitudes(P<0.05), and the highest peak of fine root biomass appeared at 2100—2400 m.(2) The total fine root biomass of 5 forest species in the 0—40 cm depth was as follows: Betula platyphylla < Populus tomentosa < Picea asperata < Sabina chinensis < Populus davidiana. There were no significant differences in biomass of fine roots among different stands.(3) Fine root biomass decreased with the soil depth, and 70% of the fine roots were concentrated in 0—20 cm soil layer.(4) Soil bulk density in the 20—40 cm soil layer was significantly greater than that in the 0—20 cm soil layer(P<0.05). It increased with the altitude, and there were substantial differences among the 5 forest species.(5) The contents of total carbon(TC), total nitrogen(TN) and total phosphorus(TP) in the surface soils(0—20 cm) were significantly higher than those in the deeper soils(20—40 cm). TC and TN increased first and then decreased, while TP decreased with the altitude gradient. The differences in soil nutrients between different forest species were obvious.(6) SEM analysis showed that the fine root biomass was significantly correlated with altitude, soil layer, and bulk density, and the biomass of fine roots directly affected soil nutrients. The forest species affected the fine root biomass indirectly. Therefore, the plant species and elevation affected the biomass and spatial distribution of fine roots by influencing the soil micro-environment.
引文
[1] Gill R A,Jackson R B.Global patterns of root turnover for terrestrial ecosystems.New Phytologist,2000,147(1):13- 31.
    [2] 张小全,吴可红.森林细根生产和周转研究.林业科学,2001(3):126- 138.
    [3] Kummerow J,Castillanos J,Maas M,Larigauderie A.Production of fine roots and the seasonality of their growth in a Mexican deciduous dry forest.Vegetatio,1990,90(1):73- 80.
    [4] 权伟,徐侠,王丰,汪家社,方燕鸿,阮宏华,余水强.武夷山不同海拔高度植被细根生物量及形态特征.生态学杂志,2008,27(7):1095- 1103.
    [5] 刘顺,罗达,杨洪国,史作民,刘千里,张利,康英,马青.川西亚高山岷江冷杉原始林细根生物量、生产力和周转.生态学杂志,2018,37(4):987- 993.
    [6] 向泽宇,张莉,张全发,刘伟,王根绪,王长庭,胡雷.青海不同林分类型土壤养分与微生物功能多样性.林业科学,2014,50(4):22- 31.
    [7] 邹扬,贺康宁,赵畅,周建,赵丹丹,安国才.高寒区青海云杉人工林密度与林下植物多样性的关系.西北植物学报,2013,33(12):2543- 2549.
    [8] 王清涛.青海云杉林更新及其幼苗幼树生长态势模拟研究.兰州:兰州大学,2017.
    [9] 字洪标,向泽宇,王根绪,阿的鲁骥,王长庭.青海不同林分土壤微生物群落结构(PLFA).林业科学,2017,53(3):21- 32.
    [10] 董旭.青海省森林资源评价.安徽农业科学,2009,37(12):5727- 5728,5751- 5751.
    [11] 生态系统固碳项目技术规范编写组.生态系统固碳观测与调查技术规范.北京:科学出版社,2015.
    [12] 陈劲松,苏智先.缙云山马尾松种群生物量生殖配置研究.植物生态学报,2001,25(6):704- 708.
    [13] 曹瑞,吴福忠,杨万勤,徐振锋,谭波,王滨,李俊,常晨晖.海拔对高山峡谷区土壤微生物生物量和酶活性的影响.应用生态学报,2016,27(4):1257- 1264.
    [14] Wang C T,Long R J,Wang Q J,Ding L M,Wang M P.Effects of altitude on plant-species diversity and productivity in an alpine meadow,Qinghai-Tibetan plateau.Australian Journal of Botany,2007,55(2):110- 117.
    [15] Xu Y,Ding Y H,Li D L.Climatic change over Qinghai and Xizang in 21st century.Plateau Meteorology,2003,22(5):451- 457.
    [16] 刘彦春,张远东,刘世荣,张笑鹤.川西亚高山针阔混交林乔木层生物量、生产力随海拔梯度的变化.生态学报,2010,30(21):5810- 5820.
    [17] 王韦韦,黄锦学,陈锋,熊德成,卢正立,黄超超,杨智杰,陈光水.树种多样性对亚热带米槠林细根生物量和形态特征的影响.应用生态学报,2014,25(2):318- 324.
    [18] Lin Y M,Lin P,Yang Z W.A study on fine root turnover.Journal of Xiamen University:Natural Science,1998,37(3):429- 435.
    [19] Vogt K A,Vogt D J,Palmiotto P A,Boon P,O′Hara J,Asbjornsen H.Review of root dynamics in forest ecosystems grouped by climate,climatic forest type and species.Plant and Soil,1995,187(2):159- 219.
    [20] 何永涛,石培礼,徐玲玲.拉萨-林芝植被样带不同群落类型的细根生物量.林业科学,2009,45(10):148- 151.
    [21] 郭忠玲,郑金萍,马元丹,韩士杰,李庆康,于贵瑞,范春楠,刘万德,邵殿坤.长白山几种主要森林群落木本植物细根生物量及其动态.生态学报,2006,26(9):2855- 2862.
    [22] Idol T W,Pope P E,Ponder Jr F.Fine root dynamics across a chronosequence of upland temperate deciduous forests.Forest Ecology and Management,2000,127(1- 3):153- 167.
    [23] 朱胜英,周彪,毛子军,王秀伟,孙元发.帽儿山林区6种林分细根生物量的时空动态.林业科学,2006,42(6):13- 19.
    [24] Campbell B D,Grime J P.A comparative study of plant responsiveness to the duration of episodes of mineral nutrient enrichment.New Phytologist,1989,112(2):261- 267.
    [25] 乔宇鑫,朱华忠,钟华平,伍兆文,孟雷,周李磊.内蒙古地区草地表层土壤容重空间格局分析.草地学报,2016,24(4):793- 801.
    [26] 方运霆,莫江明,彭少麟,李德军.森林演替在南亚热带森林生态系统碳吸存中的作用.生态学报,2003,23(9):1685- 1694.
    [27] 周李磊,朱华忠,钟华平,杨华.新疆伊犁地区草地土壤全碳含量空间格局分析.草业科学,2016,33(10):1963- 1974.
    [28] 刘伟,程积民,高阳,程杰,梁万鹏.黄土高原草地土壤有机碳分布及其影响因素.土壤学报,2012,49(1):68- 76.
    [29] 朱红霞,王艳玲,张耀鸿,周晓冬.紫金山不同海拔高度土壤的碳氮分布特征.南京信息工程大学学报,2012,4(4):326- 329.
    [30] 王瑞永,刘莎莎,王成章,郭玉霞,严学兵.不同海拔高度高寒草地土壤理化指标分析.草地学报,2009,17(5):621- 628.
    [31] 张向茹,马露莎,陈亚南,杨佳佳,安韶山.黄土高原不同纬度下刺槐林土壤生态化学计量学特征研究.土壤学报,2013,50(4):818- 825.
    [32] 丁访军,潘忠松,周凤娇,吴鹏.黔中喀斯特地区3种林型土壤有机碳含量及垂直分布特征.水土保持学报,2012,26(1):161- 164,169- 169.
    [33] 苏纪帅,程积民,高阳,仇智虎,曹怀清.宁夏大罗山4种主要植被类型的细根生物量.应用生态学报,2013,24(3):626- 632.
    [34] Vásquez-Murrieta M S,Migueles-Garduňo I,Franco-Hernández O,Govaerts B,Dendooven L.C and N mineralization and microbial biomass in heavy-metal contaminated soil.European Journal of Soil Biology,2006,42(2):89- 98.
    [35] 刘晓敏,车克钧,车宗玺,张富,张学龙.祁连山青海云杉分布带土壤的空间变异性研究.甘肃农业大学学报,2011,46(6):86- 92,98- 98.
    [36] McCormack M L,Guo D L.Impacts of environmental factors on fine root lifespan.Frontiers in Plant Science,2014,5:205.
    [37] Liu C,Xiang W H,Lei P F,Deng X W,Tian D L,Fang X,Peng C H.Standing fine root mass and production in four Chinese subtropical forests along a succession and species diversity gradient.Plant and Soil,2014,376(1- 2):445- 459.
    [38] Püttsepp ü,L?hmus K,Persson H A,Ahlstr?m K.Fine-root distribution and morphology in an acidic Norway spruce (Picea abies (L.) Karst.) stand in SW Sweden in relation to granulated wood ash application.Forest Ecology and Management,2006,221(1- 3):291- 298.
    [39] Cormier N,Twilley R R,Ewel K C,Krauss K W.Fine root productivity varies along nitrogen and phosphorus gradients in high-rainfall mangrove forests of Micronesia.Hydrobiologia,2015,750(1):69- 87.
    [40] 杨丽韫,罗天祥,吴松涛.长白山原始阔叶红松(Pinus koraiensis)林及其次生林细根生物量与垂直分布特征.生态学报,2007,27(9):3609- 3617.
    [41] Hansson K,Helmisaari H S,Sah S P,Lange H.Fine root production and turnover of tree and understorey vegetation in Scots pine,silver birch and Norway spruce stands in SW Sweden.Forest Ecology and Management,2013,309:58- 65.
    [42] 秦娟,唐心红,杨雪梅.马尾松不同林型对土壤理化性质的影响.生态环境学报,2013,22(4):598- 604.
    [43] 庞圣江,张培,贾宏炎,杨保国,邓硕坤,冯昌林,王庆灵.桂西北不同森林类型土壤生态化学计量特征.中国农学通报,2015,31(1):17- 23.
    [44] 陈金林,许新健,姜志林,张武兆,张井义,贾永正.空青山次生栎林细根周转.南京林业大学学报,1999,23(1):6- 10.
    [45] Richter D D,Markewitz D,Trumbore S E,Wells C G.Rapid accumulation and turnover of soil carbon in are-establishing forest.Nature,1999,400(6739):56- 58.
    [46] Vogt K A,Grier C C,Vogt D J.Production,turnover,and nutrient dynamics of above-and belowground detritus of world forests.Advances in Ecological Research,1986,15:303- 377.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700