用户名: 密码: 验证码:
闽江口互花米草淤积作用对其自身和短叶茳芏残体分解及硫养分释放的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of siltation by Spartina alterniflora invasion on decomposition of and sulfur release by S. alterniflora and Cyperus malaccensis in tidal marshes of the Min River Estuary
  • 作者:王杰 ; 孙志高 ; 何涛 ; 高会 ; 王华 ; 李晓
  • 英文作者:WANG Jie;SUN Zhigao;HE Tao;GAO Hui;WANG Hua;LI Xiao;Institute of Geography,(Fujian Normal University);Key Laboratory of Humid Subtropical Eco-geographical Process (Fujian Normal University) ,Ministry of Education;Fujian Provincial Key Laboratory for Subtropical Resources and Environment,(Fujian Normal University);
  • 关键词:残体分解 ; 淤积作用 ; ; 潮滩湿地 ; 闽江河口
  • 英文关键词:decomposition;;siltation;;sulfur;;tidal marsh;;Min River Estuary
  • 中文刊名:生态学报
  • 英文刊名:Acta Ecologica Sinica
  • 机构:福建师范大学地理研究所;福建师范大学湿润亚热带生态地理过程教育部重点实验室;福建师范大学福建省亚热带资源与环境重点实验室;
  • 出版日期:2019-03-08 16:16
  • 出版单位:生态学报
  • 年:2019
  • 期:10
  • 基金:福建省公益类科研院所重点项目(2016R1032-1);; 福建省“闽江学者奖励计划”项目;福建省“高等学校新世纪优秀人才计划”项目
  • 语种:中文;
  • 页:235-246
  • 页数:12
  • CN:11-2031/Q
  • ISSN:1000-0933
  • 分类号:Q948
摘要
2016—2017年,以闽江口鳝鱼滩西北部互花米草(SA)入侵初期与短叶茳芏(CM)形成的典型交错带植物残体为研究对象,基于野外原位分解试验,通过设定无淤积强度(S_0,0 cm/a)、当前淤积强度(S_5,5 cm/a)和未来淤积增强(S_(10),10 cm/a)3种处理,模拟互花米草入侵初期导致的淤积作用对其自身以及短叶茳芏残体分解及硫养分释放的影响。结果表明,随着互花米草入侵导致的淤积强度的增加,互花米草和短叶茳芏残体的分解速率均明显降低;与S_0相比,二者在S_5与S_(10)处理下的分解速率分别降低49.09%(SA)、35.14%(CM)和56.36%(SA)、44.59%(CM)。随着淤积强度的增加,互花米草和短叶茳芏残体分解过程中的TS含量整体均呈增加趋势,且其对短叶茳芏TS含量变化的影响较为明显;互花米草和短叶茳芏残体在分解过程中均表现为不同程度的硫释放,但随淤积强度的增加,二者硫释放量均呈降低趋势,且在相同淤积强度下,前者的硫释放量要高于后者。不同淤积强度下残体分解速率及硫养分释放强度的差异不仅与分解环境中的EC密切相关,且与残体残留率、初始基质质量(C/N和C/S)以及淤积导致养分条件改变而对分解过程中残体基质质量的影响有关。研究发现,随着淤积强度的增加,两种残体的分解速率及硫释放强度均降低;但在相同淤积强度下,短叶茳芏残体的分解速率和硫释放量均大于互花米草。
        During 2016—2017, two typical plant litters(Spartina alterniflora(SA) and Cyperus malaccensis(CM)) in ecotone formed by SA invasion in Northwest Shanyutan of the Min River Estuary were studied. Furthermore, the effects of siltation by SA invasion on decomposition of and sulfur(S) release from different litters were determined by in situ decomposition experiment, which included three one-off siltation treatments [no siltation treatment(0 cm/a, S_0), current siltation treatment(5 cm/a, S_5), and strong siltation treatment(10 cm/a, S_(10))]. The results showed that the decomposition rate of SA and CM litters significantly decreased with increase in siltation depth. Compared with that in the S_0 treatment, the decomposition rate in the S_5 and S_(10) treatments decreased by 49.09%(SA) and 35.14%(CM), and 56.36%(SA) and 44.59%(CM), respectively. The content of TS in SA and CM litters generally increased with increase in siltation depth, but the values in CM litter increased by a large margin. The net release of S in SA and CM litters in different siltation treatments was observed throughout the decomposition process and the release amount generally decreased with increase in siltation depth. However, in the same siltation treatment, S release from SA was significantly higher than that from CM. The differences in decomposition rate and S release amount of the two litters in different siltation treatments depended not only on the sediment EC in decomposing environments, but also on the dry mass remaining, initial substrate quality(C/N and C/S), and variations in substrate quality caused by the alteration of nutrient conditions. We found that both the decomposition rate and S release from the two litters decreased with increase in siltation depth, but with the same siltation treatment, the decomposition rate and S release from CM were higher than those of SA.
引文
[1] Kuehn K A,Suberkropp K.Decomposition of standing litter of the freshwater emergent macrophyte Juncus effusus.Freshwater Biology,1998,40(4):717- 727.
    [2] 武海涛,吕宪国,杨青,姜明,佟守正.三江平原典型湿地枯落物早期分解过程及影响因素.生态学报,2007,27(10):4027- 4035.
    [3] 孙志高,刘景双,于君宝,秦胜金.模拟湿地水分变化对小叶章枯落物分解及氮动态的影响.环境科学,2008,29(8):2081- 2093.
    [4] Lopes M L,Martins P,Ricardo F,Rodrigues A M,Quintino V.In situ experimental decomposition studies in estuaries:a comparison of Phragmites australis and Fucus vesiculosus.Estuarine,Coastal and Shelf Science,2011,92(4):573- 580.
    [5] Janousek C N,Buffington K J,Guntenspergen G R,Thorne K M,Dugger B D,Takekawa J Y.Inundation,vegetation,and sediment effects on litter decomposition in Pacific Coast Tidal Marshes.Ecosystems,2017,20(7):1296- 1310.
    [6] Sun Z G,Mou X J,Zhang D Y,Sun W L,Hu X Y,Tian L P.Impacts of burial by sediment on decomposition and heavy metal concentrations of Suaeda salsa in intertidal zone of the Yellow River estuary,China.Marine Pollution Bulletin,2017,116(1/2):103- 112.
    [7] 胡宏友,张朝潮,李雄.盐度对秋茄凋落叶分解过程中物质与能量动态的影响.植物生态学报,2010,34(12):1377- 1385.
    [8] Sun Z G,Mou X J,Sun W L.Decomposition and heavy metal variations of the typical halophyte litters in coastal marshes of the Yellow River estuary,China.Chemosphere,2016,147:163- 172.
    [9] Freeman C,Ostle N J,Fenner N,Kang H.A regulatory role for phenol oxidase during decomposition in peatlands.Soil Biology and Biochemistry,2004,36(10):1663- 1667.
    [10] Vargo S M,Neely R K,Kirkwood S M.Emergent plant decomposition and sedimentation:response to sediments varying in texture,phosphorus content and frequency of deposition.Environmental and Experimental Botany,1998,40(1):43- 58.
    [11] Chalmers A G.Soil dynamics and the productivity of Spartina alterniflora//Kennedy V S,ed.Estuarine Comparisons.New York:Academic Press,1982:231- 242.
    [12] 杨世伦,时钟,赵庆英.长江口潮沼植物对动力沉积过程的影响.海洋学报,2001,23(4):75- 80.
    [13] 王爱军,高抒,贾建军.互花米草对江苏潮滩沉积和地貌演化的影响.海洋学报,2006,28(1):92- 99.
    [14] 朱冬.江苏中部海岸潮滩沉积速率大面积测算方法[D].南京:南京大学,2015.
    [15] 王爱军,叶翔,陈坚.罗源湾海岸盐沼悬沙粒度及沉降速率的观测和分析.海洋学报,2009,31(2):165- 174.
    [16] 李华,杨世伦.潮间带盐沼植物对海岸沉积动力过程影响的研究进展.地球科学进展,2007,22(6):583- 591.
    [17] Nielsen T,Andersen F ?.Phosphorus dynamics during decomposition of mangrove (Rhizophora apiculata) leaves in sediments.Journal of Experimental Marine Biology and Ecology,2003,293(1):73- 88.
    [18] Pereira P,Ca?ador I,Vale C,Caetano M,Costa A L.Decomposition of belowground litter and metal dynamics in salt marshes (Tagus Estuary,Portugal).Science of the Total Environment,2007,380(1/3):93- 101.
    [19] Liu P P,Wang Q G,Bai J H,Gao H F,Huang L B,Xiao R.Decomposition and return of C and N of plant litters of Phragmites australis and Suaeda salsa in typical wetlands of the Yellow River Delta,China.Procedia Environmental Sciences,2010,2:1717- 1726.
    [20] Li H,Liu Y Z,Li J,Zhou X H,Li B.Dynamics of litter decomposition of dieback Phragmites in Spartina-invaded salt marshes.Ecological Engineering,2016,90:459- 465.
    [21] Sun Z G,Mou X J.Effects of sediment burial disturbance on macro and microelement dynamics in decomposing litter of Phragmites australis in the coastal marsh of the Yellow River estuary,China.Environmental Science and Pollution Research,2016,23(6):5189- 5202.
    [22] 周俊丽,吴莹,张经,孙承兴.长江口潮滩先锋植物藨草腐烂分解过程研究.海洋科学进展,2006,24(1):44- 50.
    [23] Zhang L H,Tong C,Marrs R,Wang T E,Zeng C S.Comparing litter dynamics of Phragmites australis and Spartina alterniflora in a sub-tropical Chinese estuary:Contrasts in early and late decomposition.Aquatic Botany,2014,117:1- 11.
    [24] Tong C,Zhang L H,Wang W Q,Gauci V,Marrs R,Liu B G,Jia R X,Zeng C S.Contrasting nutrient stocks and litter decomposition in stands of native and invasive species in a sub-tropical estuarine marsh.Environmental Research,2011,111(7):909- 916.
    [25] Wang W Q,Sardans J,Tong C,Wang C,Ouyang L M,Bartrons M,Peňuelas J.Typhoon enhancement of N and P release from litter and changes in the litter N:P ratio in a subtropical tidal wetland.Environmental Research Letters,2016,11(1):014003.
    [26] 仝川,刘白贵.不同水淹环境下河口感潮湿地枯落物分解及营养动态.地理研究,2009,28(1):118- 128.
    [27] 李家兵,张秋婷,张丽烟,仝川.闽江河口春季互花米草入侵过程对短叶茳芏沼泽土壤碳氮分布特征的影响.生态学报,2016,36(12):3628- 3638.
    [28] Roache M C,Bailey P C,Boon P I.Effects of salinity on the decay of the freshwater macrophyte,Triglochin procerum.Aquatic Botany,2006,84(1):45- 52.
    [29] Quintino V,Sangiorgio F,Ricardo F,Mamede R,Pires A,Freitas R,Rodrigues A M,Basset A.In situ experimental study of reed leaf decomposition along a full salinity gradient.Estuarine,Coastal and Shelf Science,2009,85(3):497- 506.
    [30] Rejmánková E,Houdková K.Wetland plant decomposition under different nutrient conditions:what is more important,litter quality or site quality?Biogeochemistry,2006,80(3):245- 262.
    [31] Craft C.Freshwater input structures soil properties,vertical accretion,and nutrient accumulation of Georgia and U.S tidal marshes.Limnology and Oceanography,2007,52(3):1220- 1230.
    [32] 范分良,黄平容,唐勇军,李兆君,梁永超.微生物群落对土壤微生物呼吸速率及其温度敏感性的影响.环境科学,2012,33(3):932- 937.
    [33] Lemley D A,Snow G C,Human L R D.The decomposition of estuarine macrophytes under different temperature regimes.Water SA,2014,40(1):117- 124.
    [34] Paalme T,Kukk H,Kotta J,Orav H.‘In vitro’ and ‘in situ’ decomposition of nuisance macroalgae Cladophora glomerata and Pilayella littoralis.Hydrobiologia,2002,475- 476(1):469- 476.
    [35] 李继红,杨世关,郑正,陈广银,邹星星,孟卓.互花米草中温厌氧发酵木质纤维结构的变化.农业工程学报,2009,25(2):199- 203.
    [36] 刘晓辉,宋孝金,陈涵,叶友章,叶忠华.互花米草化学性质和纤维形态分析.福建林业科技,2012,39(4):9- 11,37- 37.
    [37] 李新华,刘景双,杨继松.三江平原小叶章湿地枯落物在不同水位梯度上的分解及硫素释放动态.中国科学院研究生院学报,2007,24(1):59- 65.
    [38] 李新华,刘景双,杨继松.三江平原小叶章枯落物分解及硫素释放动态.中国草地学报,2006,28(3):1- 4,15- 15.
    [39] 何涛,孙志高,李家兵,高会,范爱连.闽江河口芦苇与短叶茳芏空间扩展植物-土壤系统硫含量变化特征.生态学报,2018,38(5):1607- 1618.
    [40] Zhou C F,An S Q,Deng Z F,Yin D Q,Zhi Y B,Sun Z Y,Zhao H,Zhou L X,Fang C,Qian C.Sulfur storage changed by exotic Spartina alterniflora in coastal saltmarshes of China.Ecological Engineering,2009,35(4):536- 543.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700