用户名: 密码: 验证码:
荒漠草原土壤相对湿度对猪毛蒿表型可塑性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of heterogeneous habitats on phenotypic plasticity of Artemisia scoparia in the desert steppe of China
  • 作者:陈林 ; 苏莹 ; 李月飞 ; 杨丽娜 ; 王磊 ; 宋乃平 ; 杨新国 ; 卞莹莹 ; 祝忠有 ; 孟文婷 ; 陈娟
  • 英文作者:CHEN Lin;SU Ying;LI Yuefei;YANG Lina;WANG Lei;SONG Naiping;YANG Xinguo;BIAN Yingying;ZHU Zhongyou;MENG Wenting;CHEN Juan;Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwest China, Ningxia University;Key Laboratory for Restoration and Reconstruction of Degraded Ecosystem in Northwest China of Ministry of Education, Ningxia University;Biostatistics Department, Pennsylvania State University;School of Agriculture, Ningxia University;
  • 关键词:荒漠草原 ; 猪毛蒿 ; 表型可塑性 ; 异质生境 ; 影响
  • 英文关键词:desert steppe;;A.scoparia;;phenotypic plasticity;;heterogeneous habitats;;effect
  • 中文刊名:生态学报
  • 英文刊名:Acta Ecologica Sinica
  • 机构:宁夏大学西北退化生态系统恢复与重建教育部重点实验室;宁夏大学西北土地退化与生态恢复国家重点实验室培育基地;Biostatistics Department Pennsylvania State University;宁夏大学农学院;
  • 出版日期:2019-03-08 16:16
  • 出版单位:生态学报
  • 年:2019
  • 期:10
  • 基金:国家重点研发计划(2016YFC0500709);; 宁夏高等学校一流学科建设(生态学)资助项目(NXYLXK2017B06);; 宁夏自然科学基金(2018AAC03037,NZ17005);; 宁夏青年科技人才托举工程(2018)
  • 语种:中文;
  • 页:151-160
  • 页数:10
  • CN:11-2031/Q
  • ISSN:1000-0933
  • 分类号:S812.2
摘要
猪毛蒿(Artemisia scoparia)为菊科蒿属草本植物,是一种适应性较强的广幅种。研究荒漠草原不同土壤相对湿度条件下猪毛蒿的表型可塑性,对认识异质生境下猪毛蒿的生存适应策略具有重要的生态学意义。结果表明:株高、茎粗、根长、根重和单株生物量均表现出随土壤相对湿度的增大而增加的趋势,对异质生境具有较强的可塑性,而根冠比则表现出相对的稳定性。植株不同部位生物量大小排序为:上部<中部<下部,且植株下部显著大于上部生物量(P<0.05)。土壤相对湿度>40%生境下的头状花序数量和重量显著高于土壤相对湿度<30%和30%—40%生境。繁殖器官绝对投入量(lg R)随着个体大小(lg V)的增大呈极显著的增加(P<0.001),繁殖阈值介于1.868—2.006 g。随着土壤相对湿度的增加,繁殖分配比例极显著增大(P<0.001)。营养器官和繁殖器官生物量、头状花序重量和数量、地下生物量和地上生物量均呈极显著线性正相关关系(P<0.001),存在正向权衡。单个头状花序重量并不随个体大小和头状花序数量的增加而发生显著变化(P>0.05),且在不同土壤相对湿度和不同部位间均无显著差异(P>0.05)。由此可见,猪毛蒿在异质生境下产生的可塑性是其生存繁殖的重要反应机制之一。
        Artemisia scoparia is a herbaceous plant of the composite family and a widely distributed species with a high degree of adaptability. The phenotypic plasticity of A. scoparia in different levels of relative soil humidity was addressed in this paper, which has important ecological significance for revealing survival adaptation strategies of A. scoparia in heterogeneous habitats. The results showed that plant height, stem diameter, root length, root weight, and biomass all showed an increasing trend with an increase in soil relative humidity; these factors exhibited strong plasticity across the soil water heterogeneous habitat, whereas the root/shoot ratio showed no change. The order of the biomass of different parts was: upper part < middle part < lower part, and the lower part was significantly heavier than the upper part(P<0.05). The number and weight of the head inflorescence in the high soil relative humidity(>40%) habitat were significantly greater than that in the lower soil relative humidity(<30% and 30%—40%) habitats. The absolute input of reproductive organs(lg R) increased with the increase of individual size(lg V) and showed a significant positive correlation(P<0.001). The reproductive threshold was between 1.868—2.006 g. With the increase of soil relative humidity, the proportion of reproductive allocation was significantly increased(P<0.001). There were significant positive linear correlations between vegetative organs and reproductive organs, weight, number of the head inflorescences, and underground and aboveground biomass(P<0.001). This indicated that there were positive trade-offs between each pair. However, the weight of a single head inflorescence did not change significantly with the increase of individual size or the number of head inflorescences(P>0.05), and there were no significant differences in the different soil relative humidity habitats and for the different parts of the plant(P>0.05). The phenotypic plasticity of A. scoparia in the heterogeneous environment of soil water is one of the important mechanisms for its survival and reproduction.
引文
[1] Pfennig D W.Ecological evolutionary developmental biology//Kliman R M,ed.Encyclopedia of Evolutionary Biology.Amsterdam:Elsevier,2016:474- 481.
    [2] Nicotra A B,Atkin O K,Bonser S P,Davidson A M,Finnegan E J,Mathesius U,Poot P,Purugganan M D,Richards C L,Valladares F,van Kleunen M.Plant phenotypic plasticity in a changing climate.Trends in Plant Science,2010,15(12):684- 692.
    [3] 潘晓云,耿宇鹏,张文驹,李博,陈家宽.喜旱莲子草沿河岸带不同生境的盖度变化及形态可塑性.植物生态学报,2006,30(5):835- 843.
    [4] Agrawal A A.Phenotypic plasticity in the interactions and evolution of species.Science,2001,294(5541):321- 326.
    [5] 杨贺雨,卫海燕,桑满杰,尚忠慧,毛亚娟,王小蕊,刘芳,顾蔚.华中五味子叶表型可塑性及环境因子对叶表型的影响.植物学报,2016,51(3):322- 334.
    [6] Richards C L,Bossdorf O,Muth N Z,Gurevitch J,Pigliucci M.Jack of all trades,master of some?On the role of phenotypic plasticity in plant invasions.Ecology Letters,2006,9(8):981- 993.
    [7] de Kroon H,Schieving F.Resource allocation patterns as a function of clonal morphology:a general model applied to a foraging clonal plant.Journal of Ecology,1991,79(2):519- 530.
    [8] 何军,赵聪蛟,清华,甘琳,安树青.土壤水分条件对克隆植物互花米草表型可塑性的影响.生态学报,2009,29(7):3518- 3524.
    [9] 王丹,关洋,苟海刚,杨岁芹,魏笑,靳千千,张琛,屈越强.国道309线周边植物表型可塑性浅析.中国农学通报,2015,31(13):217- 223.
    [10] 黎磊,耿宇鹏,兰志春,陈家宽,宋志平.异质生境中水生植物表型可塑性的研究进展.生物多样性,2016,24(2):216- 227.
    [11] 翟偲涵,王平,盛连喜.竞争条件下植物功能性状的表型可塑性研究进展.北华大学学报:自然科学报,2017,18(4):538- 546.
    [12] Chen J S,Yu D A N,Liu Q,Dong M.Clonal integration of the stoloniferous herb Fragaria vesca from different altitudes in Southwest China.Flora-Morphology,Distribution,Functional Ecology of Plants,2004,199(4):342- 350.
    [13] Jackson R B,Caldwell M M.The scale of nutrient heterogeneity around individual plants and its quantification with geostatistics.Ecology,1993,74(2):612- 614.
    [14] 卓露,管开云,李文军,段士民.不同生境下细叶鸢尾表型可塑性及生物量分配差异性.生态学杂志,2014,33(3):618- 623.
    [15] Dong M,During H J,Werger M J A.Root and shoot plasticity of the stoloniferous herb Ajuga reptans L.planted in a heterogeneous environment.Flora-Morphology,Distribution,Functional Ecology of Plants,2002,197(1):37- 46.
    [16] 武高林,陈敏,杜国祯.营养和光照对不同生态幅风毛菊属植物幼苗形态可塑性的影响.应用生态学报,2008,19(8):1708- 1713.
    [17] Berndtsson R,Chen H.Variability of soil water content along a transect in a desert area.Journal of Arid Environments,1994,27(2):127- 139.
    [18] 耿宇鹏,张文驹,李博,陈家宽.表型可塑性与外来植物的入侵能力.生物多样性,2004,12(4):447- 455.
    [19] 陈林,宋乃平,王磊,杨新国,李学斌,苏莹,李月飞.基于文献计量分析的蒿属植物研究进展.草业学报,2017,26(12):223- 235.
    [20] Nemani R R,Nemani C D,Hashimoto H,Jolly W M,Piper S C,Tucker C J,Myneni R B,Running S W.Climate-driven increases in global terrestrial net primary production from 1982 to 1999.Science,2003,300(5625):1560- 1563.
    [21] Sultan S E.Phenotypic plasticity for plant development,function and life history.Trends in Plant Science,2000,5(12):537- 542.
    [22] Sultan S E.Plant developmental responses to the environment:eco-devo insights.Current Opinion in Plant Biology,2010,13(1):96- 101.
    [23] 王姝,周道玮.植物表型可塑性研究进展.生态学报,2017,37(24):8161- 8169.
    [24] Hendry A P.Key questions on the role of phenotypic plasticity in eco-evolutionary dynamics.Journal of Heredity,2016,107(1):25- 41.
    [25] 李柏贞,周广胜.干旱指标研究进展.生态学报,2014,34(5):1043- 1052.
    [26] 何玉惠,赵哈林,刘新平,赵学勇,李玉霖,赵玮.不同类型沙地长穗虫实的繁殖分配及其与个体大小的关系.干旱区研究,2009,26(1):59- 64.
    [27] 韩春,陆嘉惠,陈晓翠,牛清东,宋凤,陈超南.5种甘草属植物花序和种子生产的位置效应及繁殖资源分配模式初步研究.植物资源与环境学报,2016,25(3):72- 79.
    [28] 赵志刚,杜国祯,任青吉.5种毛茛科植物个体大小依赖的繁殖分配和性分配.植物生态学报,2004,28(1):9- 16.
    [29] Richter S,Kipfer T,Wohlgemuth T,Guerrero C C,Ghazoul J,Moser B.Phenotypic plasticity facilitates resistance to climate change in a highly variable environment.Oecologia,2012,169(1):269- 279.
    [30] 韩文轩,方精云.幂指数异速生长机制模型综述.植物生态学报,2008,32(4):951- 960.
    [31] 张霁,郭兰萍,黄璐琦,王元忠.异速生长及其在道地药材研究中的应用展望.中国科学:生命科学,2013,43(6):457- 463.
    [32] Huber H,Kane N C,Heschel M S,von Wettberg E J,Banta J,Leuck A M,Schmitt J.Frequency and microenvironmental pattern of selection on plastic shade-avoidance traits in a natural population of Impatiens capensis.The American Naturalist,2004,163(4):548- 563.
    [33] 王一峰,靳洁,侯宏红,赵博,曹家豪,李筱姣.川西风毛菊花期资源分配随海拔的变化.植物生态学报,2015,39(9):901- 908.
    [34] Cheplick G P.Life history trade-offs in Amphibromus scabrivalvis (Poaceae):allocation to clonal growth,storage,and cleistogamous reproduction.American Journal of Botany,1995,82(5):621- 629.
    [35] 任明迅,姜新华,张大勇.植物繁殖生态学的若干重要问题.生物多样性,2012,20(3):241- 249.
    [36] 徐波,王金牛,石福孙,高景,吴宁.青藏高原东缘野生暗紫贝母生物量分配格局对高山生态环境的适应.植物生态学报,2013,37(3):187- 196.
    [37] Poorter H,Niklas K J,Reich P B,Oleksyn J,Poot P,Mommer L.Biomass allocation to leaves,stems and roots:meta-analyses of interspecific variation and environmental control.New Phytologist,2012,193(1):30- 50.
    [38] 关保华,葛滢,樊梅英,牛晓音,卢毅军,常杰.华荠苧响应不同土壤水分的表型可塑性.生态学报,2003,23(2):259- 263.
    [39] Wang S,Callaway R M,Zhou D W,Weiner J.Experience of inundation or drought alters the responses of plants to subsequent water conditions.Journal of Ecology,2017,105(1):176- 187.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700