用户名: 密码: 验证码:
原始红松林退化演替后土壤氮矿化特征变化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Characteristics of soil nitrogen mineralization in the degraded and successional primitive Korean pine forest in the Lesser Khingan Mountain, Northern China
  • 作者:张秀月 ; 付岩梅 ; 刘楠 ; 冯富娟
  • 英文作者:ZHANG Xiuyue;FU Yanmei;LIU Nan;FENG Fujuan;College of Life Science, Northeast Forestry University;
  • 关键词:原始红松林 ; 土壤氮营养生境 ; 净矿化速率 ; 温度敏感性指数
  • 英文关键词:primitive Korean pine forests;;soil nitrogen nutrition;;net mineralization rate;;temperature sensitivity index
  • 中文刊名:生态学报
  • 英文刊名:Acta Ecologica Sinica
  • 机构:东北林业大学生命科学学院;
  • 出版日期:2019-05-23
  • 出版单位:生态学报
  • 年:2019
  • 期:10
  • 基金:国家自然科学基金项目(31670496);; 中央高校基本科研业务费专项(2572015EA0)
  • 语种:中文;
  • 页:170-178
  • 页数:9
  • CN:11-2031/Q
  • ISSN:1000-0933
  • 分类号:S714.2
摘要
土壤氮矿化是氮素生物地理化学循环的重要环节,表征着土壤的供氮潜力,其变化过程会影响森林生态系统生产力。从小兴安岭典型的原始红松林及其退化形成的次生阔叶林样地采集土壤样品,采用好气室内培养法,研究在不同培养温度(4℃、12℃、20℃、28℃和36℃)和湿度(20%、40%、60%、80%和100%饱和持水量,WHC)下,2种林地土壤氮转化速率的变化。结果表明:与原始红松林相比,次生阔叶林表层土(0—20 cm)的有机质、全碳、全氮、硝态氮、碳/氮比、全磷、速效磷、速效钾、pH值均显著升高,铵态氮显著降低(P<0.05)。采用方差分析结果表明:原始红松林表层土壤的净矿化速率、净硝化速率均显著低于次生阔叶林,但净氨化速率的变化则相反;培养温度和湿度及两者的交互作用均对土壤氮转化速率影响显著(P<0.001)。原始红松林和次生阔叶林净矿化速率对温度和湿度变化的响应存在一定差异,最适温度和湿度分别为28℃—36℃和60%(WHC)。原始红松林土壤氮矿化温度敏感性指数(Q_(10))显著高于次生阔叶林(P<0.05),均值分别为2.08和1.80,Q_(10)与基质质量指数(A)呈负相关,与土壤有机质呈极显著负相关(P<0.01)。
        Soil nitrogen mineralization is a key component of the nitrogen biogeochemical cycle, which indicates the potential of the soil nitrogen supply, and its changing process will impact the productivity of forest ecosystems. In this study, soil samples were collected from the typical plots of primitive Korean pine forests and clear cutting-formed the secondary broad-leaved forests in the Lesser Khingan Mountain,Northern China; then they were cultivated aerobically under indoor conditions at different culture temperatures(4℃, 12℃, 20℃, 28℃, and 36℃) and humidity(20%, 40%, 60%, 80%, and 100% saturated water holding capacity; WHC). Soil nitrogen transformation rates were compared between primitive Korean pine forest and the secondary broad-leaved forest. The results showed that the organic matter, total carbon, total nitrogen, nitrate nitrogen, carbon-to-nitrogen ratio, total phosphorus, available phosphorus, available potassium, and pH in the surface soil(0—20 cm) were significantly increased(P< 0.05) and ammonium nitrogen significantly decreased(P< 0.05) in the secondary broad-leaved forest compared to the primitive Korean pine forest. An analyses of variance showed that net mineralization rate and net nitrification rate of the surface soils were significantly lower in the primitive Korean pine forest than the secondary broad-leaved forest; however, net ammonification rates showed the opposite trend when it was compared between the two forest types. Soil nitrogen transformation rates were significantly affected by the temperature and humidity(P< 0.001). There were significant differences in responses of net mineralization rate to changes in temperature and humidity between the primitive Korean pine forest and the secondary broad-leaved forest, the optimum temperature and humidity were 28℃—36℃ and 60% WHC for the soils of both forests. The temperature sensitivity index of soil nitrogen mineralization(Q_(10) value) in the primitive Korean pine forest was significantly higher than that of the secondary broad-leaved forest(P< 0.05). The Q_(10 )value was negatively correlated with the matrix quality index(A) and soil organic matter(P< 0.01).
引文
[1] Masek J G,Hayes D J,Hughes M J,Healey S P,Turner D P.The role of remote sensing in process-scaling studies of managed forest ecosystems.Forest Ecology Management,2015,355:109123.
    [2] Chen G X,Yu K W,Liao L P,Xu G S,Freney J R,Galloway J N,Minami K,Powlson D S,Zhu Z L.Effect of human activities on forest ecosystems:N cycle and soil fertility.Nutrient Cycling in Agroecosystems,2000,57(1):47- 54.
    [3] Abera G,WoldeMeskel E,Bakken L R.Carbon and nitrogen mineralization dynamics in different soils of the tropics amended with legume residues and contrasting soil moisture contents.Biology and Fertility of Soils,2012,48(1):51- 66.
    [4] Yahdjian L,Gherardi L,Sala O E.Nitrogen limitation in arid-subhumid ecosystems:a meta-analysis of fertilization studies.Journal of Arid Environments,2011,75(8):675- 680.
    [5] Liu Y,Wang C H,He N P,Wen X F,Gao Y,Li S G,Niu S L,Butterbach-Bahl K,Luo Y Q,Yu G R.A global synthesis of the rate and temperature sensitivity of soil nitrogen mineralization:latitudinal patterns and mechanisms.Global Change Biology,2017,23(1):455- 464.
    [6] Daebeler A,Bodelier P L E,Hefting M M,Rütting T,Jia Z J,Laanbroek H J.Soil warming and fertilization altered rates of nitrogen transformation processes and selected for adapted ammonia-oxidizing archaea in sub-arctic grassland soil.Soil Biology and Biochemistry,2017,107:114- 124.
    [7] Watts D B,Torbert H A,Prior S A,Huluka G.Long-term tillage and poultry litter impacts soil carbon and nitrogen mineralization and fertility.Soil Science Society of America Journal,2010,74(4):1239- 1247.
    [8] Guntiňas M E,Leirós M C,Trasar-Cepeda C,Gil-Sotres F.Effects of moisture and temperature on net soil nitrogen mineralization:a laboratory study.European Journal of Soil Biology,2012,48:73- 80.
    [9] Knoepp J D,Swank W T.Using soil temperature and moisture to predict forest soil nitrogen mineralization.Biology Fertility of Soils,2002,36(3):177- 182.
    [10] 朱剑兴,王秋凤,何念鹏,王若梦,代景忠.内蒙古不同类型草地土壤氮矿化及其温度敏感性.生态学报,2013,33(19):6320- 6327.
    [11] 陈静,李玉霖,冯静,苏娜,赵学勇.温度和水分对科尔沁沙质造地土壤氮矿化的影响.中国沙漠,2016,36(1):103- 110.
    [12] Wetterstedt J ? M,Persson T,?gren G I.Temperature sensitivity and substrate quality in soil organic matter decomposition:results of an incubation study with three substrates.Global Change Biology,2010,16(6):1806- 1819.
    [13] Weedon J T,Aerts R,Kowalchuk G A,van Logtestijn R,Andringa D,van Bodegom P M.Temperature sensitivity of peatland C and N cycling:does substrate supply play a role?Soil Biology and Biochemistry,2013,61:109- 120.
    [14] Meyer N,Welp G,Amelung W.The temperature sensitivity (Q10) of soil respiration:controlling factors and spatial prediction at regional scale based on environmental soil classes.Global Biogeochemical Cycles,2018,32(2):306- 323.
    [15] 朱教君,刘世荣.森林干扰生态研究.北京:中国林业出版社,2007:1703- 1710.
    [16] 屈明华.温带森林土壤有效态氮营养生境演变特征[D].哈尔滨:东北林业大学,2005.
    [17] 贺伟,布仁仓,熊在平,胡远满.1961—2005年东北地区气温和降水变化趋势.生态学报,2013,33(2):519- 531.
    [18] Ross D S,Lawrence G B,Fredriksen G.Mineralization and nitrification patterns at eight northeastern USA forested research sites.Forest Ecology Management,2004,188(1):317- 335.
    [19] Mammeri Y,Burie J B,Langlais M,Calonnec A.How changes in the dynamic of crop susceptibility and cultural practices can be used to better control the spread of a fungal pathogen at the plot scale?Ecological Modelling,2014,290:178- 191.
    [20] 杨庆朋,徐明,刘洪升,王劲松,刘丽香,迟永刚,郑云普.土壤呼吸温度敏感性的影响因素和不确定性.生态学报,2011,31(8):2301- 2311.
    [21] 肖好燕,刘宝,余再鹏,万晓华,桑昌鹏,周富伟,黄志群.亚热带不同林分土壤矿质氮库及氮矿化速率的季节动态.应用生态学报,2017,28(3):730- 738.
    [22] Pregitzer K S,Euskirchen E S.Carbon cycling and storage in world forests:biome patterns related to forest age.Global Change Biol,200,10(12):2052- 2077.
    [23] Wang S Q,Zhou L,Chen J M,Ju W M,Feng X F,Wu W X.Relationships between net primary productivity and stand age for several forest types and their influence on China′s carbon balance.Journal of Environmental Management,2011,92(6):1651- 1662.
    [24] 黄兴召,许崇华,徐俊,陶晓,徐小牛.利用结构方程解析杉木林生产力与环境因子及林分因子的关系.生态学报,2017,37(7):2274- 2281.
    [25] Smolander A,Kanerva S,Adamczyk B,Kitunen V.Nitrogen transformations in boreal forest soils—does composition of plant secondary compounds give any explanations?Plant and Soil,2012,350(1/2):1- 26.
    [26] 金发会,李世清,卢红玲,李生秀.黄土高原不同土壤微生物量碳、氮与氮素矿化势的差异.生态学报,2008,28(1):227- 236.
    [27] 孙雪,隋心,韩冬雪,刘岩,冯富娟.原始红松林退化演替后土壤微生物功能多样性的变化.环境科学研究,2017,30(6):911- 919.
    [28] Rothstein D E,Cregg B M.Effects of nitrogen form on nutrient uptake and physiology of Fraser fir (Abies fraseri).Forest Ecology and Management,2005,219(1):69- 80.
    [29] 侯松嵋.土壤氨基酸微生物转化过程研究[D].沈阳:中国科学院沈阳应用生态研究所,2007.
    [30] Kronzucker H J,Siddiqi M Y,Glass A D M.Conifer root discrimination against soil nitrate and the ecology of forest succession.Nature,1997,385(6611):59- 61.
    [31] 郝敬梅,张韫,崔晓阳,彭红梅.原始阔叶红松林、次生林土壤矿质氮特征及树种吸收反应.北京林业大学学报,2014,36(1):21- 25.
    [32] 王承义,徐起,何林荣.人工林天然更新过程的干扰效应与人为干扰方式.林业科技,2000,25(5):1- 3.
    [33] Liu Y,He N P,Wen X F,Yu G R,Gao Y,Jia Y L.Patterns and regulating mechanisms of soil nitrogen mineralization and temperature sensitivity in Chinese terrestrial ecosystems.Agriculture,Ecosystems & Environment,2016,215:40- 46.
    [34] 罗光强,耿元波.温度和水分对羊草草原土壤呼吸温度敏感性的影响.生态环境学报,2009,18(5):1938- 1943.
    [35] 严金龙.湿地、稻田土壤酶分布与活性及生态功能指示[D].南京:南京农业大学,2011.
    [36] Taylor P G,Townsend A R.Stoichiometric control of organic carbon-nitrate relationships from soils to the sea.Nature,2010,464(7292):1178- 1181.
    [37] Lu S B,Zhang Y J,Chen C R,Xu Z H,Guo X M.Plant-soil interaction affects the mineralization of soil organic carbon:evidence from 73-year-old plantations with three coniferous tree species in subtropical Australia.Journal of Soils and Sediments,2017,17(4):985- 995.
    [38] Dalias P,Anderson J M,Bottner P,Co?teaux M M.Temperature responses of net nitrogen mineralization and nitrification in conifer forest soils incubated under standard laboratory conditions.Soil Biology and Biochemistry,2002,34(5):691- 701.
    [39] Fang H J,Yu G R,Cheng S L,Zhu T H,Wang Y S,Yan J H,Wang M,Cao M,Zhou M.Effects of multiple environmental factors on CO2 emission and CH4 uptake from old-growth forest soils.Biogeosciences,2010,7(1):395- 407.
    [40] LeBauer D S,Treseder K K.Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed.Ecology,2008,89(2):371- 379.
    [41] 赵宁,张洪轩,王若梦,杨满业,张艳,赵小宁,于贵瑞,何念鹏.放牧对若尔盖高寒草甸土壤氮矿化及其温度敏感性的影响.生态学报,2014,34(15):4234- 4241.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700