用户名: 密码: 验证码:
重金属胁迫下生物炭和间作对刨花润楠生长及根系形态的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Biochar and Intercropping on the Growth and Root Morphology of Machilus pauhoi Under Heavy Metal Stress
  • 作者:郭雄飞
  • 英文作者:GUO Xiongfei;College of Environmental Science and Engineering, China West Normal University;Institute of Environmental Science, China West Normal University;College of Resources and Environmental Sciences, South China Agricultural University;
  • 关键词:生物炭 ; 间作 ; 植物生长 ; 根系形态 ; 重金属
  • 英文关键词:biochar;;intercropping;;plant growth;;root morphology;;heavy metal
  • 中文刊名:水土保持研究
  • 英文刊名:Research of Soil and Water Conservation
  • 机构:西华师范大学环境科学与工程学院;西华师范大学环境科学研究所;华南农业大学资源环境学院;
  • 出版日期:2019-03-29
  • 出版单位:水土保持研究
  • 年:2019
  • 期:02
  • 基金:西华师范大学博士启动项目(412666);; 国家高新技术研究发展(863)计划项目子课题(2013AA102402)
  • 语种:中文;
  • 页:341-348+355
  • 页数:9
  • CN:61-1272/P
  • ISSN:1005-3409
  • 分类号:S792.24;X173
摘要
为了探讨在重金属胁迫下,不同用量(0,1%,4%,8%)生物炭与间作望江南(Cassia occidentalis)对土壤碳氮养分、刨花润楠(Machilus pauhoi)及望江南株高、生物量和根系形态的影响,研究生物炭与间作联合对刨花润楠促生增效效应,以刨花润楠为研究对象,开展了室内盆栽试验。结果表明:在Cd,Cr和Zn胁迫土壤中,间作望江南对土壤碳氮含量的影响不显著,生物炭则显著增加了土壤碳氮含量及碳氮比,且随施用量的增加而增加。生物炭与间作互作对两种植物生长前期的株高影响不明显,但随生长期的延长,各处理间两种植物的长势差异均逐渐显现,不同用量生物炭处理下望江南株高间差异不显著,但与对照相比,均显著增加。同时,施加生物炭有助于根系形态的发育及干物质积累,相比于单作下对照(CK),间作与生物炭(T_3)复合处理下刨花润楠根系和地上部干重分别增加了81.48%和122.52%,与不施炭相比,各生物炭处理下,望江南根系和地上部干重增幅分别为27.12%~39.63%和17.19%~19.03%;生物炭显著增加了望江南及刨花润楠根系各形态参数,与单作相比,间作下刨花润楠根系形态参数也略有增加,但影响不显著。生物炭与间作互作比各自单一处理对植物的促生增效作用更明显。该研究为轻度污染区植被造林提供科学依据和参考。
        Machilus pauhoi was taken as the test material, a pot experiment at greenhouse was conducted to study the effect of the combination of different dosages(0, 1%, 4%, 8%) of biochar and intercropping Cassia occidentalis on soil carbon and nitrogen nutrient, Machilus pauhoi and Cassia occidentalis plant height, biomass and root morphology under heavy metal stress, in order to study the combination of biochar and intercropping on the Machilus pauhoi growth promoting synergistic effect. The results showed that,under Cd,Cr and Zn stresses,the effect of intercropping on the soil carbon and nitrogen contents was not significant; the soil carbon and nitrogen contents and C/N ratio significantly increased with the increase of the biochar application amount; the influences of biochar and intercropping on the plant height growth of the two species were not obvious at early growth stage, but with the extension of their growing periods, the growth differences of the two species between different treatments both started to appear gradually. There was no significant difference of the Cassia occidentalis plant height among different amounts of biochar application, while the plant height in biochar treatment groups were significantly higher than that in control group. At the same time, biochar was helpful for the development of root morphology and dry matter accumulation. Compared with monoculture under control(CK), Machilus paunoi root and shoot dry weight increased by 81.48% and 122.52% with the combination of T_3 treatment and intercropping. Compared with no application of biochar, the growth rate of Cassia occidentalis root and shoot dry weight increased by 27.12%~39.63% and 17.19%~19.03%, respectively, under each biochar treatments. Biochar significantly increased the morphological parameters of Cassia occidentalis and Machilus paunoi root. Compared with monoculture, Machilus paunoi root morphological parameters in intercropping treatments also increased, but the effect was not significant. The interaction effect of biochar and intercropping on plant growth was more obvious than single treatment. This study could provide scientific basis and reference for the vegetation afforestation in the mild polluted areas.
引文
[1]Li Z Y, Ma Z W, Kuijp T J V D, et al. A review of soil heavy metal pollution from mines in China:Pollution and health risk assessment[J]. Science of the Total Environment, 2014,468/469:843-853.
    [2]Alwabel M I, Usman A R A, Enaggar A H, et al. Conocarpus biochar as a soil amendment for reducing heavy metal availability and uptake by maize plants[J]. Saudi Journal of Biological Sciences, 2015,22(4):503-511.
    [3]Hunter D, Ross D S. Evidence for a phytotoxic hydroxy-aluminum polymer in organic soil horizons[J]. Science,1991,251(4997):1056-1058.
    [4]Uchimiya M, Chang S C, Klasson K T. Screening biochars for heavy metal retention in soil: Role of oxygen functional groups[J]. Journal of Hazardous Materials, 2011,190(1/3):432-441.
    [5]李金文,顾凯,唐朝生,等.生物炭对土体物理化学性质影响的研究进展[J].浙江大学学报:工学版,2018(1):192-206.
    [6]Oh S Y, Seo Y D. Factors affecting sorption of nitro explosives to biochar:pyrolysis temperature, surface treatment, competition, and dissolved metals[J]. Journal of Environmental Quality, 2015,44(3):833-840.
    [7]Zwieten V L, Kimber S, Morris S, et al. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility[J]. Plant and Soil, 2010,327(1/2):235-246.
    [8]Ahmad M, Rajapaksha A U, Lim J E, et al. Biochar as a sorbent for contaminant management in soil and water: A review[J]. Chemosphere, 2014,99(3):19-33.
    [9]李江遐,吴林春,张军,等.生物炭修复土壤重金属污染的研究进展[J].生态环境学报,2015,24(12):2075-2081.
    [10]Zhu Q, Wu J, Wang L, et al. Effect of biochar on heavy metal speciation of paddy soil[J]. Water Air and Soil Pollution, 2015,226(12):1-10.
    [11]Ahmad M, Ara U, Al-Faraj A S, et al. Phosphorus-loaded biochar changes soil heavy metals availability and uptake potential of maize(Zea mays L.) plants[J]. Chemosphere, 2018,194:327-339.
    [12]Ventura F, Salvatorelli F, Piana S, et al. The effects of biochar on the physical properties of bare soil[J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 2013,103(1):5-11.
    [13]Tsai W, Liu S, Chen H, et al. Textural and chemical properties of swine-manure-derived biochar pertinent to its potential use as a soil amendment[J]. Chemosphere, 2012,89(2):198-203.
    [14]Rees F, Simonnot M O, Morel J L. Short-term effects of biochar on soil heavy metal mobility are controlled by intra-particle diffusion and soil pH increase[J]. European Journal of Soil Science, 2014,65(1):149-161.
    [15]Ali A, Di G, Zhang Y, et al. Using bamboo biochar with compost for the stabilization and phytotoxicity reduction of heavy metals in mine-contaminated soils of China[J]. Scientific Reports, 2017,7(1):2690-2701.
    [16]刘阿梅,向言词,田代科,等.生物炭对植物生长发育及重金属镉污染吸收的影响[J].水土保持学报,2013,27(5):193-198.
    [17]Betencourt E, Duputel M, Colomb B, et al. Intercropping promotes the ability of durum wheat and chickpea to increase rhizosphere phosphorus availability in a low P soil[J]. Soil Biology & Biochemistry, 2012,46(1):181-190.
    [18]Hu J, Chan P T, Wu F, et al. Arbuscular mycorrhizal fungi induce differential Cd and P acquisition by Alfred stonecrop(Sedum alfredii Hance)and upland kangkong(Ipomoea aquatica Forsk.) in an intercropping system: a section of agriculture, ecosystems & environment[J]. Applied Soil Ecology, 2013,63(12):29-35.
    [19]Ye Z H, Yang Z Y, Chan G Y S, et al. Growth response of Sesbania rostrata and S. cannabina to sludge-amended lead/zinc mine tailings:a greenhouse study[J]. Environment International, 2001,26(5):449-455.
    [20]张达斌.黄土高原地区种植豆科绿肥协调土壤水分和氮素供应的效应及机理[D].陕西杨凌:西北农林科技大学,2016.
    [21]Love A, Banerjee B D, Babu C R. Assessment of oxidative stress markers and concentrations of selected elements in the leaves of Cassia occidentalis growing wild on a coal fly ash basin[J]. Environmental Monitoring and Assessment, 2013,185(8):6553-6562.
    [22]Love A, Tandon R, Banerjee B D, et al. Comparative study on elemental composition and DNA damage in leaves of a weedy plant species, Cassia occidentalis, growing wild on weathered fly ash and soil[J]. Ecotoxicology, 2009,18(7):791-801.
    [23]刘胜洪,张雅君,杨妙贤,等.稀土尾矿区土壤重金属污染与优势植物累积特征[J].生态环境学报,2014,23(6):1042-1045.
    [24]Wei S D, Chen R Y, Liao M M, et al. Antioxidant condensed tannins from Machilus pauhoi leaves[J]. Journal of Medicinal Plant Research, 2011,5(5):796-804.
    [25]郑绍鑫,蒋林,滕维超,等.刨花润楠对硝酸铅胁迫的生长和生理响应机制[J].林业工程学报,2015,29(3):25-30.
    [26]尚杰,耿增超,陈心想,等.施用生物炭对旱作农田土壤有机碳、氮及其组分的影响[J].农业环境科学学报,2015,34(3):509-517.
    [27]Thies J E, Rillig M C. Characteristics of Biochar: Biological Properties[M]//Lehmann J, Joseph S. Biochar for Environmental Management: Science and Technology. London: Earthscan, 2009.
    [28]Deng Y, Zhang T, Wang Q. Biochar Adsorption Treatment for Typical Pollutants Removal in Livestock Wastewater: A Review[M]//Huang W J. Engineering Applications of Biochar. London: IntechOpen, 2017.
    [29]Probst A, Liu H, Fanjul M, et al. Response of Vicia faba L. to metal toxicity on mine tailing substrate: Geochemical and morphological changes in leaf and root[J]. Environmental and Experimental Botany, 2009,66(2):297-308.
    [30]Liu X, Shen Y, Lou L, et al. Copper tolerance of the biomass crops Elephant grass(Pennisetum purpureum Schumach), Vetiver grass(Vetiveria zizanioides)and the upland reed(Phragmites australis)in soil culture[J]. Biotechnology Advances, 2009,27(5):633-640.
    [31]黄化刚,李廷强,朱治强,等.可溶性磷肥对重金属复合污染土壤东南景天提取锌/镉及其养分积累的影响[J].植物营养与肥料学报,2012,18(2):382-389.
    [32]程杰,高压军.镉毒害对小麦生理生态效应的研究进展[J].水土保持研究,2006,13(6):218-221,227.
    [33]Han Y, Yuan H, Huang S, et al. Cadmium tolerance and accumulation by two species of Iris[J]. Ecotoxicology, 2007,16(8):557-563.
    [34]朱雪梅,林立金,杨远祥,等.锌铬复合胁迫对水稻植株碳氮代谢的影响[J].水土保持研究,2008,15(5):149-151.
    [35]Major J, Rondon M, Molina D, et al. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol[J]. Plant and Soil, 2010,333(1/2):117-128.
    [36]焦念元,宁堂原,尹飞,等.小麦晚套露地花生间作玉米高产高效栽培技术[J].作物杂志,2012(1):137-138.
    [37]黄超,刘丽君,章明奎.生物质炭对红壤性质和黑麦草生长的影响[J].浙江大学学报:农业与生命科学版,2011,37(4):439-445.
    [38]姜圆圆,郑毅,汤利,等.豆科禾本科作物间作的根际生物过程研究进展[J].农业资源与环境学报,2016,33(5):407-415.
    [39]朱彦霖,朱奕豪,张秀省.生物炭对百合生长发育的影响[J].北方园艺,2018(1):86-91.
    [40]Guo X F, Li H S, Chen H Y. The effects of biochar and intercropping on the Cd, Cr and Zn speciation in soils and plant uptake by Machilus pauhoi[J]. Bulletin of Environmental Contamination & Toxicology, 2017,98(4):1-8.
    [41]王吉秀,湛方栋,李元,等.铅胁迫下小花南芥与玉米间作对根系分泌物有机酸的影响[J].中国生态农业学报,2016,24(3):365-372.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700