用户名: 密码: 验证码:
氨与甲苯SOA形成含氮有机物的影响因素研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on the factors affecting the formation of nitrogen-containing organic compounds formed from ammonia and toluene secondary organic aerosol
  • 作者:徐俊 ; 黄明强 ; 冯状状 ; 蔡顺有 ; 赵卫雄 ; 胡长进 ; 顾学军 ; 张为俊
  • 英文作者:XU Jun;HUANG Ming-qiang;FENG Zhuang-zhuang;CAI Shun-you;ZHAO Wei-xiong;HU Chang-jin;GU Xue-jun;ZHANG Wei-jun;College of Chemistry & Chemical Engineering and Environment, Minnan Normal University, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology;Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences;
  • 关键词:甲苯二次有机气溶胶 ; ; 含氮有机物 ; 影响因素 ; 烟雾腔
  • 英文关键词:toluene secondary organic aerosol;;ammonia;;nitrogen-containing organic compounds;;influencing factor;;somg chamber
  • 中文刊名:中国环境科学
  • 英文刊名:China Environmental Science
  • 机构:闽南师范大学化学化工与环境学院福建省现代分离分析科学与技术重点实验室;中国科学院安徽光学精密机械研究所大气物理化学实验室;
  • 出版日期:2019-02-20
  • 出版单位:中国环境科学
  • 年:2019
  • 期:02
  • 基金:国家自然科学基金资助项目(41575118,41305109);; 福建省自然科学基金资助杰青项目(2015J06009)
  • 语种:中文;
  • 页:87-95
  • 页数:9
  • CN:11-2201/X
  • ISSN:1000-6923
  • 分类号:X513
摘要
利用自制的烟雾腔系统使臭氧光解产生OH自由基,启动甲苯光氧化产生二次有机气溶胶(SOA)粒子,在不同的实验条件下研究甲苯SOA与氨反应形成的含氮有机物,并采用紫外-可见分光光度计测量反应产物溶液在205和270nm处的吸光度,探究光照时间、甲苯、氨、臭氧浓度和相对湿度等环境因素对含氮有机物形成的影响规律.结果表明,有机酸铵和咪唑类产物的生成浓度随着紫外光照时间的延长,甲苯、氨和臭氧的浓度的增加而逐渐增大.但是当臭氧浓度超过一定值后,光解生成的高浓度OH自由基能够使甲苯光氧化产物变成更多的挥发性化合物,从而不利于含氮有机物的生成.水分子的增加会使臭氧光解产生的OH自由基浓度减少,从而导致有机酸铵和咪唑类产物的生成浓度随着相对湿度的增大而降低.这为研究人为源SOA颗粒中含氮有机物棕色碳的形成提供了实验依据.
        Ozone was photolyzed to produce OH radicals, and photooxidation of toluene is initiated to generate secondary organicaerosol(SOA) particles in home-made smog chamber, nitrogen-containing organic compounds formed from toluene SOA reactionwith ammonia were studied under different experimental conditions. The absorbance at 205 and 270 nm of the reaction productsolution measured by UV-visible spectrophotometer was used to study the influence of environmental factors such as irradiationtime, the concentration of toluene, ammonia, ozone, and relative humidity on the formation of nitrogen-containing organiccompounds. The experimental results demonstrated that the concentration of organic acid ammonium and imidazole productsgradually increases with the increase of ultraviolet irradiation time and the concentrations of toluene, ammonia and ozone.However, when the concentration of ozone exceeds a certain value, the high concentration of OH radicals generated by photolysisof ozone can oxidize the photooxidation product of toluene into more volatile compounds, which is not conducive to theformation of nitrogen-containing organic compounds. Also, the increase of water molecules would reduce the concentration ofOH radicals, resulting in the decrease of the concentration of organic acid ammonium and imidazole products as the relativehumidity increases. These would provide the experimental basis for studying the formation of the nitrogen-containing organicbrown carbon of anthropogenic SOA particles.
引文
[1]Li L J,Tang P,Nakao S S,et al.Novel approach for evaluating secondary organic aerosol from aromatic hydrocarbons:unified method for predicting aerosol composition and formation[J].Environmental Science&Technology,2016,50(12):6249-6256.
    [2]Gentner D R,Jathar S H,Gordon T D,et al.Review of urban secondary organic aerosol formation from gasoline and diesel motor vehicle emissions[J].Environmental Science&Technology,2017,51(3):1074-1093.
    [3]Yang B,Ma P,Shu J,et al.Formation mechanism of secondary organic aerosol from ozonolysis of gasoline vehicle exhaust[J].Environmental Pollution,2018,234:960-968.
    [4]Sareen N,Waxman E M,Turpin B J,et al.Potential of aerosol liquid water to facilitate organic aerosol formation:assessing knowledge gaps about precursors and partitioning[J].Environmental Science&Technology,2017,51(6):3327-3335.
    [5]Tang M J,Alexander J M,Kwon D,et al.Optical and physico chemical properties of brown carbon aerosol:light scattering,FTIRextinction spectroscopy,and hygroscopic growth[J].The Journal of Physical Chemistry A,2016,120(24):4155-4166.
    [6]Thurston G D,Ahn J,Cromar K R,et al.Ambient particulate mater air pollution exposure and mortality in the NIH-AARP diet and health cohort[J].Environmental Health Perspectives,2016,124(4):484-490.
    [7]乐满,王式功,谢佳君,等.环境条件对遵义市呼吸系统疾病的影响及预测研究[J].中国环境科学,2018,38(11):4334-4347.Yue M,Wang S G,Xie J J,et al.Study about the impact of environmental conditions on respiratory diseases and prediction in Zunyi City[J].China Environmental Science,2018,38(11):4334-4347.
    [8]董文煊,邢佳,王书肖.1994~2006年中国人为源大气氨排放时空分布[J].环境科学,2010,31(7):1457-1463.Dong W X,Xing J,Wang S X.Temporal and spatial distribution of anthropogenic ammonia emissions in china:1994~2006[J].Environmental Science,2010,31(7):1457-1463.
    [9]Chu B,Zhang X,Liu Y,et al.Synergetic formation of secondary inorganic and organic aerosol:effect of SO2 and NH3on particle formation and growth[J].Atmospheric Chemistry and Physics,2016,16(22):14219-14230.
    [10]Cheng Y F,Zheng G J,Wei C,et al.Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China[J].Science Advances,2016,2(12,e1601530):1-11.
    [11]Na K,Song C,Switzer C,et al.Effect of ammonia on secondary organic aerosol formation fromα-Pinene ozonolysis in dry and humid conditions[J].Environmental Science&Technology,2007,41(12):6096-6102.
    [12]Babar Z B,Park J H,Lim H J.Influence of NH3 on secondary organic aerosols from the ozonolysis and photooxidation ofα-pinene in a flow reactor[J].Atmospheric Environment,2017,164:71-84.
    [13]Liu Y,Liggio J,Staebler R,et al.Reactive uptake of ammonia to secondary organic aerosols:kinetics of organonitrogen formation[J].Atmospheric Chemistry and Physics,2015,15(23):13569-13584.
    [14]Huang M Q,Xu J,Cai S Y,et al.Chemical analysis of particulate products of aged 1,3,5-trimethylbenzene secondary organic aerosol in the presence of ammonia[J].Atmospheric Pollution Research,2018,9(1):146-155.
    [15]Huang M Q,Xu J,Cai S Y,et al.Characterization of brown carbon constituents of benzene secondary organic aerosol aged with ammonia[J].Journal of Atmospheric Chemistry,2018,75(2):205-218.
    [16]Flores J M,Washenfelder R A,Adler G,et al.Complex refractive indices in the near-ultraviolet spectral region of biogenic secondary organic aerosol aged with ammonia[J].Physical Chemistry Chemical Physics,2014,16(22):10629-10642.
    [17]Teich M,van Pinxteren D,Kecorius S,et al.First quantification of imidazoles in ambient aerosol particles:potential photosensitizers,brown carbon constituents,and hazardous components[J].Environmental Science&Technology,2016,50(3):1166-1173.
    [18]Laskin A,Laskin J,Nizkorodov S A.Chemistry of atmospheric brown carbon[J].Chemical Review,2015,115(10):4335-4382.
    [19]Tsui W G,Rao Y,Dai H L,et al.Modeling photosensitized secondary organic aerosol formation in laboratory and ambient aerosols[J].Environmental Science&Technology,2017,51(13):7496-7501.
    [20]Atkinson R.Atmospheric chemistry of VOCs and NOx[J].Atmospheric Environment,2000,34(12-14):2063-2101.
    [21]Romonosky D E,Li Y,Shiraiwa M,et al.aqueous photochemistry of secondary organic aerosol of alpha-Pinene and alpha-Humulene oxidized with ozone,hydroxyl radical,and nitrate radical[J].The Journal of Physical Chemistry A,2017,121(6):1298-1309.
    [22]Lee A K Y,Zhao R,Li R,et al.Formation of light absorbing organo-nitrogen species from evaporation of droplets containing glyoxal and ammonium sulfate[J].Environmental Science&Technology,2013,47(22):12819-12826.
    [23]Pierce J R,Engelhart G J,Hildebrandt L,et al.Constraining particle evolution from wall losses,coagulation,and condensation-evaporation in smog-chamber experiments:optimal estimation based on size distribution measurements[J].Aerosol Science and Technology,2008,42(12):1001-1015.
    [24]郝立庆,王振亚,黄明强,等.羟基自由基浓度对二次有机气溶胶形成的影响[J].中国环境科学,2006,26(S1):65-67.Hao L Q,Wang Z Y,Huang M Q,et al.Influence of hydroxyl radical concentration on the secondary organic aerosol formation[J].China Environmental Science,2006,26(S1):65-67.
    [25]Faust J A,Wong J P S,Lee A K Y,et al.Role of aerosol liquid water in secondary organic aerosol formation from volatile organic compounds[J].Environmental Science&Technology,2017,51(3):1405-1413.
    [26]宋秀瑜,曹念文,赵成,等.南京地区相对湿度对气溶胶含量的影响[J].中国环境科学,2018,38(09):3240-3246.Song X Y,Cao N W,Zhao C,et al.Effect of relative humidity on aerosol content in Nanjing[J].China Environmental Science,2011,23(12):2013-2018.
    [27]张宇飞,朱燕群,王树荣,等.甲苯的光氧化降解试验研究[J].环境科学学报,2015,35(9):2759-2765.Zhang Y F,Zhu Y Q,Wang S R,et al.Experimental study on the degradation of toluene by photo-oxidation[J].Acta Scientiae Circumstantiae,2015,35(9):2759-2765.
    [28]张春洋,马永亮.UV(254nm+185nm)光照降解气态甲苯的实验研究[J].中国环境科学,2011,31(6):898-903.Zhang C Y,Ma Y L.Experimental study on UV(254nm+185nm)phtotodegradation of gaseous toluene[J].China Environmental Science,2011,31(6):898-903.
    [29]Wang Y J,Luo H,Jia L,et al.Effect of particle water on ozone and secondary organic aerosol formation from benzene-NO2-Na Cl irradiations[J].Atmospheric Environment,2016,140:386-394.
    [30]Hu G S,Xu Y F,Jia L.Effects of relative humidity on the characterization of a photochemical smog chamber[J].Journal of Environmental Sciences,2011,23(12):2013-2018.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700