用户名: 密码: 验证码:
星载对地观测偏振传感器及其大气遥感应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Polarimetric Satellite Sensors for Earth Observation and Applications in Atmospheric Remote Sensing
  • 作者:李正强 ; 谢一凇 ; 洪津 ; 王中挺 ; 王舒鹏 ; 孙晓兵 ; 乔延利 ; 顾行发
  • 英文作者:LI Zhengqiang;XIE Yisong;HONG Jin;WANG Zhongting;WANG Shupeng;SUN Xiaobing;QIAO Yanli;GU Xingfa;State Environment Protection Key Laboratory of Satellite Remote Sensing, Aerospace Information Research Institute, Chinese Academy of Sciences;Key Laboratory of Optical Calibration and Characterization,Anhui Institute of Optics and Fine Mechanics,Chinese Academy of Sciences;Satellite Environment Center,Ministry of Ecology and Environmental;National Satellite Meteorological Center China Meteorological Administration;
  • 关键词:偏振 ; 卫星传感器 ; 大气遥感 ; 气溶胶和云 ; 定标
  • 英文关键词:polarization;;satellite sensor;;atmospheric remote sensing;;aerosol and cloud;;calibration
  • 中文刊名:大气与环境光学学报
  • 英文刊名:Journal of Atmospheric and Environmental Optics
  • 机构:中国科学院空天信息研究院国家环境保护卫星遥感重点实验室;中国科学院安徽光学精密机械研究所中国科学院通用光学定标与表征技术重点实验室;生态环境部卫星环境应用中心;国家气象局国家卫星气象中心;
  • 出版日期:2019-01-15
  • 出版单位:大气与环境光学学报
  • 年:2019
  • 期:01
  • 基金:国家重点研发计划,2016YFE0201400;; 中国科学院科研装备研制项目,YZ201664;中国科学院科技服务网络计划区域重点项目,KFJ-STS-QYZD-022~~
  • 语种:中文;
  • 页:6-21
  • 页数:16
  • CN:34-1298/O4
  • ISSN:1673-6141
  • 分类号:X513;X87
摘要
偏振反映电磁波的方向特性,是除强度之外电磁波的另一维度的信息。在电磁波与大气颗粒物的相互作用中,偏振由于其对颗粒物物理特征的高敏感性,可以有效提高卫星遥感探测的丰度和精度,改善对大气中特性复杂的气溶胶和云等成分的探测能力。首次综合介绍了我国研制的4种类型星载对地观测偏振传感器,包括多角度偏振相机、推扫式偏振成像仪、摆扫式偏振仪、多通道偏振辐射计,并分析了代表性的国产偏振传感器的指标参数,总结了各类载荷的探测能力。在此基础上,介绍了星载偏振传感器的主要定标方法,包括发射前实验室定标、星上定标和在轨定标。偏振载荷具有增加卫星观测维度和精度、对大气颗粒物粒径和形状特征敏感、改善弱信号探测等方面的综合优势,能够获取全球范围内高精度的大气气溶胶和云参数。星载对地观测偏振传感器具有广阔的大气遥感应用空间和潜力,可在细颗粒物PM2.5卫星遥感、关键气候因子观测及评估、极端环境事件监测、气溶胶生态效应评估、对地观测高精度大气校正等多个领域发挥作用。
        Polarization that reflects the directional characteristics of electromagnetic wave, provides unique information of electromagnetic wave other than intensity. In the interactions between electromagnetic wave and atmospheric particles, polarimetry is able to effectively improve the abundance and accuracy of satellite remote sensing observation,thanks to its high sensitivities to the physical properties of particles. And polarization can significantly enhance the detection capability of the complicated atmospheric components, such as cloud and aerosol. For the first time, four types of polarimetric satellite sensor were introduced for earth observation, including directional polarimetric camera,push-broom polarimetric imager, whisk-broom polarimetric imager and multi-channel polarimetric radiometer. The related and representative Chinese polarimetric sensors are listed, with their characteristic parameters introduced and detection abilities analyzed. Then, typical calibration methods of polarimetric satellite sensors are introduced, including pre-launch laboratory calibration, onboard calibration and in-orbit calibration. Given the advantages of extra observing dimension and accuracy, high sensitivity to particulate size and shape, and enhancement on retrieving weak atmospheric signal, polarimetric satellite sensors have the abilities to obtain comprehensive and accurate aerosol and cloud parameters over the earth. These spaceborne polarimetric sensors have broad application opportunities and enormous potentials in the fields of atmospheric remote sensing, including monitoring atmospheric fine particulate matters PM2.5, observation and retrieval of essential climate variables, monitoring and assessment of extreme environmental events, evaluation of aerosol ecological effects and high-precision atmospheric correction for earth observation.
引文
[1] Penner J E, Chuang C C, Grant K. Climate forcing by carbonaceous and sulfate aerosols[J]. Climate Dynamics,1998, 14(12):839-851.
    [2] Ramanathan V, Crutzen P J, Kiehl J T, et al. Atmosphere-Aerosols, climate, and the hydrological cycle[J].Science, 2001, 294(5549):2119-2124.
    [3] Boucher O, Randall D, Artaxo P, et al. Clouds and aerosols[R]. in:Climate Change 2013:the Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 2013:571-657.
    [4] Shi Guangyu, Wang Biao, Zhang Hua, et al. The radiative and climatic effects of atmospheric aerosols[J]. Chinese Journal of Atmospheric Sciences, 2008, 32(4):826-840(in Chinese).石广玉,王标,张华,等.大气气溶肢的辐射与气候效应[J].大气科学,2008, 32(4):826-840.
    [5] Zhang Xiaoye. Aerosol over China and their climate effect[J]. Advances in Earth Science, 2007, 22(1):12-16(in Chinese).张小曳.中国大气气溶胶及其气候效应的研究[J].地球科学进展,2007, 22(1):12-16.
    [6] Kaufman Y J, Tanre D, Remer L A, et al. Operational remote sensing of tropospheric aerosol over the land from EOS-MODIS[J]. Journal of Geophysical Research Atmospheres, 1997, 102(27):51-67.
    [7] Diner D J, Beckert J C, Reilly T H, et al. Multi-angle imaging spectro radiometer(MISR)instrument description and experiment overview[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998,36(4):1072-1087.
    [8] Maignan F, Breon F M, Fedele E, et al. Polarized reflectances of natural surfaces:Spaceborne measurements and analytical modeling[J]. Remote Sensing of Environment, 2009, 113(12):2642-2650.
    [9] Bertrand F, Guillaume B, Bruno L, et al. PARASOL in-flight calibration and performance[J]. Applied Optics,2007, 46(22):5435-5451.
    [10] Tanre D, Breon F M, Deuze J L, et al. Remote sensing of aerosols by using polarized, directional and spectral measurements within the A-Train:the PARASOL mission[J]. Atmospheric Measurement Techniques, 2011, 4(7):1383-1395.
    [11] Marbach T, Riedi J, Lacan A, et al. The 3MI mission:multi-viewing-channel-polarisation imager of the EUMETSAT polar system:second generation(EPS-SG)dedicated to aerosol and cloud monitoring[C]. Polarization Science and Remote SensingⅦ. International Society for Optical and Photonics,2015,9613:96310.
    [12] Thanyapraneedkul J, Muramatsu K, Daigo M, et al. A vegetation index to estimate terrestrial gross primary production capacity for the global change observation mission-climate(GCOM-C)/second-generation global imager(SGLI)satellite sensor[J]. Remote Sensing, 2012, 4(12):3689-3720.
    [13] Wang Han, Sun Xiaobing, Sun Bin, et al. Evaluation of land surface polarization models based on airborne advanced atmosphere multi-angle polarization radiometer measurements[J]. Acta Optica Sinica, 2014, 34(1):252-259(in Chinese).王涵,孙晓兵,孙斌,等.基于航空多角度偏振辐射计遥感数据评估陆地表面偏振反射模型[J].光学学报,2014,34(1):252-259.
    [14] Qie L, Li Z, Sun X, et al. Improving remote sensing of aerosol optical depth over land by polarimetric measurements at 1640 nm:Airborne test in North China[J]. Remote Sensing, 2015, 7(5):6240-6256.
    [15] Li Z, Hou W, Hong J, et al. Directional Polarimetric Camera(DPC):Monitoring aerosol spectral optical properties over land from satellite observation[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 218(7):21-37.
    [16] Chen X, Wang J, Liu Y, et al. Angular dependence of aerosol information content in CAPI/TanSat observation over land:Effect of polarization and synergy with A-train satellites[J]. Remote Sensing of Environment, 2017,196:163-177.
    [17] Yang Bin, Yan Changxiang, Zhang Junqiang, et al. Polarimetric calibration of multi-channel polarimetric imager[J]. Optics and Precision Engineering, 2017, 25(5):1126-1134(in Chinese).杨斌,颜昌翔,张军强,等.多通道型偏振成像仪的偏振定标[J].光学精密工程,2017, 25(5):1126-1134.
    [18] Yang Hongchun, Yang Benyong, Song Maoxin, et al. Onboard polarimetric calibration method of particulate observing scanning polarimeter[J]. Chinese Journal of Lasers, 2018, 45(11):1110002(in Chinese).杨洪春,杨本永,宋茂新,等.星载偏振扫描仪的星上偏振定标方法[J].中国激光,2018, 45(11):1110002.
    [19] Ma Yan, Li Zhengqiang, Li Hao, et al. Influence of aerosol model in the atmospheric correction of satellite images-a case study over Tianjin Region[J]. Remote Sensing Technology and Applicaton,2014,29(3):410-418(in Chinese).马(?),李正强,李浩,等.卫星影像大气校正中气溶胶模型的影响分析一以天津地区为例[J].遥感技术与应用,2014, 29(3):410-418.
    [20] Kang Qing. Research on system-level radiometric and polarized calibration methods in laboratory of polarization remote sensors[D]. Hefei:Doctorial Dissertation of University of Science and Technology of China, 2018(in Chinese).康晴.偏振遥感器实验室系统级辐射与偏振定标方法研究[D].合肥:中国科学技术大学博士论文,2018.
    [21] Fan Huimin, Kang Qing, Qiu Zhenwei, et al. Polarization calibration for multi-spectral aperture-divided simultaneous detection system[J]. Acta Optica Sinica, 2017(2):275-283(in Chinese).范慧敏,康晴,裘桢炜,等.多光谱分孔径同时探测系统偏振定标方法[J].光学学报,2017(2):275-283.
    [22] Hu Yadong, Hu Qiaoyun, Sun Bin, et al. Doubel-angle polarized atmospheric corrector for remote sensing images[J]. Optics and Precision Engineering, 2015, 23(3):652-659(in Chinese).胡亚东,胡巧云,孙斌,等.遥感图像双角度偏振大气校正仪[J].光学精密工程,2015, 23(3):652-659.
    [23] Zhang Junqiang, Xue Chuang, Gao Zhiliang, et al. Optical remote sensor for cloud and aerosol from space:past,present and future[J]. Chinese Optics, 2015, 8(5):679-698(in Chinese).张军强,薛闯,高志良,等.云与气溶胶光学遥感仪器发展现状及趋势[J].中国光学,2015, 8(5):679-698.
    [24] Song Maoxin, Sun Bin, Sun Xiaobing, et al. Polarization calibration of airborne multi-angle polarimetric radiometer[J]. Optics and Precision Engineering, 2012, 20(6):1153-1158(in Chinese).宋茂新,孙斌,孙晓兵,等.航空多角度偏振辐射计的偏振定标[J].光学精密工程,2012, 20(6):1153-1158.
    [25] Kang Qing, Li Jianjun, Chen Ligang, et al. Test and uncertainty analysis of reflectance source with variable polarization degree and large dynamic range[J]. Acta Optica Sinica, 2015, 35(4):0412003(in Chinese).康晴,李健军,陈立刚,等.大动态范围可调线性偏振度参考光源检测与不确定度分析[J].光学学报,2015, 35(4):0412003.
    [26] Zheng Xiaobing. High-accuracy radiometric calibration of satellite optical remote sensors[J]. Spacecraft Recovery and Remote Sensing, 2011, 32(5):36-43(in Chinese).郑小兵.高精度卫星光学遥感器辐射定标技术[J].航天返回与遥感,2011,32(5):36-43.
    [27] Hagolle O, Goloub P, Deschamps P Y, et al. Results of POLDER in-flight calibration[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(3):1550-1566.
    [28] Wang Yi, Hong Jin, Sun Xiaobing, et al. Technique of polarization remote sensing instrument for aerosol measurements and its onboard calibration[J]. Journal of Atmospheric and Environmental Optics, 2014, 9(2):131-137(in Chinese).王羿,洪津,孙晓兵,等.用于气溶胶探测的偏振遥感器及其在轨定标技术[J].大气与环境光学学报,2014, 9(2):131-137.
    [29] Goloub P, Toubbe B, Herman M, et al. In-flight polarization calibration of POLDER[C]. Advanced and NextGeneration SatellitesⅡ, 1997, 2957:299-311.
    [30] Goloub P, Deuze J L, Herman M, et al. Analysis of the POLDER polarization measurements performed over cloud covers[J].IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(1):78-88.
    [31] Holben B N, Eck T F, Slutsker I, et al. AERONET-A federated instrument network and data archive for aerosol characterization[J]. Remote Sensing of Environment, 1998, 66(1):1-16.
    [32] Li Zhengqiang, Li Donghui, Li Kaitao, et al. Sun-sky radiometer observation network with the extension of multi-wavelength polarization measurements[J]. Journal of Remote Sensing, 2015, 19(3):495-519(in Chinese).李正强,李东辉,李凯涛,等.扩展多波长偏振测量的太阳-天空辐射计观测网[J].遥感学报, 2015, 19(3):495-519.
    [33] Li Z Q, Xu H, Li K T, et al. Comprehensive study of optical, physical, chemical, and radiative properties of total columnar atmospheric aerosols over China:An overview of sun-sky radiometer observation network(SONET)measurements[J]. Bulletin of the American Meteorological Society, 2018, 99(4):739-755.
    [34] Ma Y, Li Z, Li Z, et al. Validation of MODIS aerosol optical depth retrieval over mountains in central China based on a sun-sky radiometer site of SONET[J]. Remote Sensing, 2016, 8(2):1-14.
    [35] Breon F M, Vermeulen A, Descloitres, J. An evaluation of satellite aerosol products against sunphotometer measurements[J]. Remote Sensing of Environment, 2011, 115(12):3102-3111.
    [36] Hou W, Wang J, Xu X, et al. An algorithm for hyperspectral remote sensing of aerosols:2. Information content analysis for aerosol parameters and principal components of surface spectra[J]. Journal of Quantitative Spectroscopy Radiative Transfer, 2017, 192:14-29.
    [37] Nadal F, Breon F M. Parameterization of surface polarized reflectance derived from POLDER spaceborne measurements[J]. IEEE Transactions on Geoscience Remote Sensing, 1999, 37(3):1709-1718.
    [38] Waquet F, Le'on J F, Cairns B, et al. Analysis of the spectral and angular response of the vegetated surface polarization for the purpose of aerosol remote sensing over land[J]. Applied Optics, 2009, 48(6):1228-1236.
    [39] Zhang Y, Li Z, Qie L, et al. Retrieval of aerosol fine-mode fraction from intensity and polarization measurements by PARASOL over East Asia[J]. Remote Sensing, 2016, 8(5):1-18.
    [40] Fan X, Goloub P, Deuze J-L, et al. Evaluation of PARASOL aerosol retrieval over North East Asia[J]. Remote Sensing of Environment, 2008, 112(3):697-707.
    [41] Dubovik O, Herman M, Holdak, A, et al. Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations[J]. Atmospheric Measurement Techniques, 2011, 4(5):975-1018.
    [42] Li Li. Retrieval of Elements of the Scattering Phase Matrix of Aerosol Particles Based on the Multi-Angle MultiSpectral Stokes Parameter Measurements[D]. Beijing:Doctorial Dissertation of University of Chinese Academy of Sciences, 2016(in Chinese).李莉.基于多角度多光谱Stokes参数测量的气溶胶散射相矩阵元素反演研究[D].北京:中国科学院大学博士论文, 2016.
    [43] Deuze J L, Breon F M, Devaux C, et al. Remote sensing of aerosols over land surface from POLDER-ADEOS—1 polarized measurements[J]. Journal of Geophysical Research Atmospheres, 2001, 106(D5):4913-4926.
    [44] Chen H, Cheng T, Gu X, et al. Evaluation of polarized remote sensing of aerosol optical thickness retrieval over China[J]. Remote Sensing, 2015, 7(10):13711-13728.
    [45] Cheng T H, Gu X F, Xie D H, et al. Simultaneous retrieval of aerosol optical properties over the Pearl River Delta,China using multi-angular, multi-spectral, and polarized measurements[J]. Remote Sensing of Environment, 2011,115(7):1643-1652.
    [46] Wang Z, Chen L, Li Q, et al. Retrieval of aerosol size distribution from multi-angle polarized measurements assisted by intensity measurements over East China[J]. Remote Sensing of Environment, 2012, 124(124):679-688.
    [47] Zhang Y, Li Z, Qie L, et al. Retrieval of aerosol optical depth using the empirical orthogonal functions(EOFs)based on PARASOL multi-angle intensity data[J]. Remote Sensing, 2017, 2017(9):1-12.
    [48] Wang S, Fang L, Zhang X, et al. Retrieval of Aerosol Properties for Fine/Coarse Mode Aerosol Mixtures over Beijing from PARASOL Measurements[J]. Remote Sensing, 2015, 7(7):9311-9324.
    [49] Zhang Y, Li Z. Remote sensing of atmospheric fine particulate matter(PM2.5)mass concentration near the ground from satellite observation[J]. Remote Sensing of Environment, 2015, 160:252-262.
    [50] Li Z, Zhang Y, Shao J, et al. Remote sensing of atmospheric particulate mass of dry PM2.5 near the ground:Method validation using ground-based measurements[J]. Remote Sensing of Environment, 2016, 173:59-68.
    [51] Levy R C, Remer L A, Kleidman R G, et al. Global evaluation of the Collection 5 MODIS dark-target aerosol products over land[J]. Atmospheric Chemistry and Physics, 2010, 10(21):10399-10420.
    [52] Xie Y, Li Z, Li L, et al. Aerosol optical, microphysical, chemical and radiative properties of high aerosol load cases over the Arctic based on AERONET measurements[J]. Scientific Reports, 2018, 8(1):1-9.
    [53] Schuster G L, Dubovik O, Arola A. Remote sensing of soot carbon-Part 1:Distinguishing different absorbing aerosol species[J]. Atmospheric Chemistry Physics, 2016, 15(9):13607-13656.
    [54] Dubovik O, Smirnov A, Holben B N, et al. Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network(AERONET)Sun and sky radiance measurements[J]. Journal of Geophysical Research Atmospheres, 2000, 105(D8):9791-9806.
    [55] Ma Yan. Synchronous atmospheric correction of high spatial resolution remote sensing image[D]. Beijing:Doctorial Dissertation of University of Chinese Academy of Sciences, 2016(in Chinese).马(?).高空间分辨率光学遥感卫星同步大气校正研究[D].北京:中国科学院大学博士论文,2016.
    [56] Li Zhengqiang, Chen Xingfeng, et al. An overview of atmospheric correction for optical remote sensing satellite[J]. Journal of Nanjing University of Information Science and Technology, 2018, 10(1):6-15(in Chinese).李正强,陈兴峰,等.光学遥感卫星大气校正研究综述[J].南京信息工程大学学报,2018, 10(1):6-15.
    [57] Yue X, Unger N. Aerosol optical depth thresholds as a tool to assess diffuse radiation fertilization of the land carbon uptake in China[J]. Atmospheric Chemistry and Physics, 2017, 17(2):1329-1342.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700