用户名: 密码: 验证码:
一种新型的低散射微带天线阵设计
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Novel design of microstrip antenna array with low scattering performance
  • 作者:兰俊祥 ; 曹祥玉 ; 高军 ; 韩江枫 ; 刘涛 ; 丛丽丽 ; 王思铭
  • 英文作者:Lan Jun-Xiang;Cao Xiang-Yu;Gao Jun;Han Jiang-Feng;Liu Tao;Cong Li-Li;Wang Si-Ming;Information and Navigation College, Air Force Engineering University;
  • 关键词:微带天线阵 ; 低散射 ; 电磁表面
  • 英文关键词:microstrip antenna array;;low scattering performance;;electromagnetic surface
  • 中文刊名:物理学报
  • 英文刊名:Acta Physica Sinica
  • 机构:空军工程大学信息与导航学院;
  • 出版日期:2019-01-29 10:57
  • 出版单位:物理学报
  • 年:2019
  • 期:03
  • 基金:国家自然科学基金(批准号:61471389,61501494,61671464,61701523);; 陕西省自然科学基金(批准号:2017JM6025,2018JM6040)资助的课题~~
  • 语种:中文;
  • 页:154-163
  • 页数:10
  • CN:11-1958/O4
  • ISSN:1000-3290
  • 分类号:TN820
摘要
本文将电磁表面(electromagnetic surface, EMS)的设计思想引入到微带天线阵的设计中,在设计天线单元的同时,也将其作为EMS单元兼顾其反射特性.通过在矩形辐射贴片上开弧形缺口,得到一种新的单元结构,该单元可与原始EMS单元之间形成180°±30°有效相位差,且作为天线单元时与原始天线工作在相同谐振模式、相同频带.将两种单元以棋盘形式构成组合天线阵,在两个极化下分别基于相位对消原理和吸波原理实现了雷达散射截面(radar cross section, RCS)减缩.实测与仿真结果表明:相较于等大小的金属板,在x极化波照射下,天线阵在5.6—6.0 GHz实现了6 dB以上的RCS减缩,相对带宽为10.1%;在y极化波照射下,天线阵在5.0—7.2 GHz实现了6 dB以上的RCS减缩,相对带宽为24%.同时由于两种单元在辐射上具有较好的一致性,使得组合天线阵的辐射性能得以保持.该方法有效解决了天线阵辐射和散射难以兼顾的矛盾,为其他形式的低散射天线阵的设计提供了新的方法与思路.
        In this paper, the idea of electromagnetic surface(EMS) is introduced into the design of microstrip antenna array. The antenna element proposed in this paper is treated as an EMS element, whose reflection characteristics are taken into consideration in the process of antenna array design. Firstly, a rectangular patch antenna element is designed. Then, by cutting arc-shaped structure into a rectangular patch, another element is created to generate 180° ± 30° effective phase difference compared with original antenna element. As a consequence, 180° ± 30° effective phase difference is obtained from 5.5 GHz to 6.9 GHz for the y-polarized incidence. Meanwhile, for the x-polarized incidence, each of the two elements possesses high absorptivity over the operating frequency as a result of matching load. Besides, the two elements work in the same resonant mode and the same resonant frequency band when treated as radiators. In order to further explain the consistency in radiation and difference in reflection between the two structures, current distribution at 5.8 GHz is investigated in terms of radiation and reflection. Then, the two elements are arranged into a chessboard array to achieve the low scattering performance based on phase cancellation principle under the y-polarized incidence. Based on the absorption principle, the matching load is added to improve the scattering performance of the composite antenna array with the x-polarized incidence. Simultaneously, the proposed antenna array maintains good radiation characteristics due to the consistency between the radiation performances of the two elements. The corresponding antenna array is fabricated and tested. Simulated and measured results prove that the proposed antenna array also achieves good radiation performance. And a 6 dB radar cross section reduction is obtained from 5.6 to 6.2 GHz under the x polarization and from 5.5 to 7.0 GHz under the y polarization for the normal incident wave, implying 10.1% and 24% in relative bandwidth, respectively. In-band reflection suppression in the specular direction is demonstrated for an incident angle of 30° under both polarizations. The measured results are in good agreement with the simulated ones. Additionally, the approach proposed in this paper offers an effective way to deal with the confliction between radiation and scattering performance, and can also be applied to other kinds of antenna arrays.
引文
[1]Li W Q,Cao X Y,Gao J,Zhao Y,Yang H H,Liu T 2015Acta Phys.Sin.64 094102(in Chinese)[李文强,曹祥玉,高军,赵一,杨欢欢,刘涛2015物理学报64 094102]
    [2]Jiang W,Zhang Y,Deng Z B,Hong T 2013 J.Electromagn.Waves 27 1077
    [3]Jiang W,Gong S X,Hong T,Wang X 2010 Acta Electronica Sinica 38 2162(in Chinese)[姜文,龚书喜,洪涛,王兴2010电子学报38 2162]
    [4]Genovesi S,Costa F,Monorchio A 2014 IEEE Trans.Antennas Propag.62 163
    [5]Landy N I,Sajuyigbe S,Mock J J,Smith D R,Padilla W J2008 Phys.Rev.Lett.100 207402
    [6]Lan J X,Cao X Y,Gao J,Cong L L,Wang S M,Yang H H2018 Radioengineering 27 746
    [7]Zhang C,Cheng Q,Yang J,Zhao J,Cui T J 2017 Appl.Phys.Lett.110 143511
    [8]Paquay M,Iriarte J C,Ederra I,Gonzalo R,Maagt P 2007IEEE Trans.Antennas Propag.55 3630
    [9]Zheng Y J,Gao J,Xu L M,Cao X Y,Liu T 2017 IEEEAntennas Wirel.Propag.Lett.16 1651
    [10]Wang H B,Cheng Y J 2016 IEEE Trans.Antennas Propag.64 914
    [11]Xu G Y,Hum S V,Eleftheriades G V 2018 IEEE Trans.Antennas Propag.66 780
    [12]Jia Y T,Liu Y,Zhang W B,Wang J,Wang Y Z,Gong S X,Liao G S 2018 Opt.Mater.8 597
    [13]Zheng Q,Guo C J,Ding J 2018 IEEE Antennas Wirel.Propag.Lett.17 1459
    [14]Yang H H,Cao X Y,Gao J,Liu T,Ma J J,Yao X,Li W Q2013 Acta Phys.Sin.62 064103(in Chinese)[杨欢欢,曹祥玉,高军,刘涛,马嘉俊,姚旭,李文强2013物理学报62 064103]
    [15]Zheng Y J,Cao X Y,Gao J,Yuan Z D,Yang H H 2015IEEE Antennas Wirel.Propag.Lett.14 1582
    [16]Liu Y,Li K,Jia Y T,Hao Y W,Gong S X,Guo Y J 2016IEEE Trans.Antennas Propag.64 326
    [17]Joozdani M Z,Amirhosseini M K,Abdolali A 2016 Electron.Lett.52 767
    [18]Su J X,Kong C Y,Li Z R,Yin H C,Yang Y Q 2017Electron.Lett.53 520
    [19]Kang X L,Su J X,Zhang H,Yang Y Q 2017 Electron.Lett.53 1088
    [20]Zhang C,Gao J,Cao X Y,Xu L M,Hang J F 2018 IEEEAntennas Wirel.Propag.Lett.17 869
    [21]Sun H F,Deng Y K,Lei H,Jiao J J,Shi L 2012 J.Graduate Sch.Chin.Acad.Sci.29 282(in Chinese)[孙慧峰,邓云凯,雷宏,焦军军,石力2012中国科学院研究生院学报29 282]
    [22]Li X 2017 M.S.Thesis(Nanjing:Nanjing University of Information Science&Technology)(in Chinese)[李响2017硕士学位论文(南京:南京信息工程大学)]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700