用户名: 密码: 验证码:
念青唐古拉山现代冰川1999—2015年期间动态变化遥感研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Dynamic Variation of Glaciers in Nyainqentanglha Mountain During 1999-2015:Evidence from Remote Sensing
  • 作者:安国英 ; 韩磊 ; 黄树春 ; 谷延群 ; 郭兆成 ; 王珊珊
  • 英文作者:AN Guoying;HAN Lei;HUANG Shuchun;GU Yanqun;GUO Zhaocheng;WANG Shanshan;China Aero Geophysical Survey and Remote Sensing Center for Land and Resources;Sichuan Institute of Geological Survey;Remote Sensing Centre of Hunan Province;Institute of Hydrogeology and Engineering Geology,Hebei Bureau of Geology Mineral Resources Exploration;
  • 关键词:冰川变化 ; 冰川编目 ; 遥感调查 ; 念青唐古拉山
  • 英文关键词:glacier variation;;glacier inventory;;remote sensing;;Nyainqentanglha Mountain
  • 中文刊名:现代地质
  • 英文刊名:Geoscience
  • 机构:中国国土资源航空物探遥感中心;四川省地质调查院;湖南省遥感中心;河北省地质矿产勘查开发局水文工程地质勘查院;
  • 出版日期:2019-02-15
  • 出版单位:现代地质
  • 年:2019
  • 期:01
  • 基金:中国地质调查局项目“青藏冰川变化与冰湖溃决灾害遥感综合调查”(121201003000160012)
  • 语种:中文;
  • 页:178-188
  • 页数:11
  • CN:11-2035/P
  • ISSN:1000-8527
  • 分类号:TP79;P343.6;P332
摘要
利用1999年ETM、2014/2015年GF-1为主的2期遥感影像作为数据源,采用人机交互解译的方法完成了2期冰川编目成果,并对最近15年(1999—2015)念青唐古拉山冰川变化进行分析。结果显示,从1999年至2015年间,念青唐古拉山脉冰川呈退缩趋势,以东段海洋型冰川退缩为主,西段亚大陆型冰川相对稳定。冰川总面积减少了56. 32km2,减少变化率为0. 67%;有10条冰川消失,减少变化率为0. 16%;冰储量减少5. 315 km3,减少变化率为0. 78%。调查结果还显示,念青唐古拉山地区冰川各朝向均呈退缩趋势,偏南向和东向冰川数量与面积减少大于偏北向和西向的;平均坡度在20°~35°范围的冰川数量和面积减少最多;海拔介于4 500~5 500 m区间的冰川面积退缩最明显。在恒河流域和萨尔温江流域的冰川消退最显著。总体上,不同规模冰川均有退缩,规模≤5. 0 km2的冰川是念青唐古拉山地区退缩最多的。冰川退缩与气候变化关系密切。选取念青唐古拉山脉附近3个气象台站,对最近50多年以来的年均气温和年降水量变化分析表明,自1961年以来,念青唐古拉山年均气温呈显著上升趋势,而降水量变化不一,有增有减。气温上升而降水减少,可能是导致念青唐古拉山地区东段冰川退缩的一个因素。
        Using the two-phase remote sensing images based on ETM in 1999 and mainly GF-1 in 2014/2015,two phases of glacier inventory are completed by manual/automatic interpretation methods,and the glacial change in the past 15 years in the Nyainqentanglha Mountain is summarized. The results show that the glaciers were retreating in the mountain from 1999 to 2015,some of which retreated in the east,and the subcontinent was relatively stable in the west. The area covered by the glacier reduced for a total amount of 56. 32 km2,representing a reduction rate of 0. 67%. Ten glaciers have disappeared,representing a reduction rate of0. 16%. The ice volume loss is 5. 315 km3,representing a reduction rate of 0. 78%. On one hand,the glaciers are retreating in every directions,and the number and size of the glaciers decrease more in the south and east than in the north and west. The number and size of the glaciers decrease mostly in the average slope of 20° to35°. On the other hand,the size decrease is most significant at the elevations of 4,500 to 5,500 m. Analogously,the glacial size decreased is obvious in the Ganges Basin,followed by the Salween River Basin,where the glaciers are most concentrated. The recession of the glaciers with sizes of ≤5. 0 km2 are most obvious among the glaciers of other sizes. There is a close relation between the glacial retreat and climate change. The annual average temperature and precipitation changes from three meteorological stations near the mountain over the past 50 years show that the annual average temperature has increased significantly,while the precipitation has fluctuated since 1961. The temperature rise and precipitation drop in the east may have been one of the reasons behind the more severe glacial retreat in the east( than in the west) during this period.
引文
[1] PAUL F. A new glacier inventory for the Svartisen region,Norway,from Landsat ETM+data:challenges and change assessment[J]. Journal of Glaciology,2009,55:607-618.
    [2] PAUL F. A new glacier inventory on southern Baffin Island,Canada,from ASTER data:II. Data analysis, glacier change and applications[J]. Annals of Glaciology,2010,50:22-31.
    [3] BOLCH T,MENOUNOS B,WHEATE R. Landsat-based inventory of glaciers in western Canada,1985—2005[J]. Remote Sensing of Environment,2010,114(1):127-137.
    [4] HEISHANDSOME.世界冰川监测服务处[EB/OL]. https://baike. baidu. com/item/.世界冰川监测服务处/704197? fr=aladdin.
    [5] PAUL F,KAAB A,MAISCH M,et al. Rapid disintegration of Alpine glaciers observed with satellite data[J]. Geophysical Research Letters,2004,31:L21402.
    [6] RAUP B,KAAB A,KARGEL J,et a1. Remote sensing and GIS technology in the Global Land Ice Measurements from Space(GLIMS)Project[J]. Computers&Geosciences,2007,33(1):104-125.
    [7]姚檀栋,刘时银,蒲健辰,等.高亚洲冰川的近期退缩及其对西北水资源的影响[J].中国科学(D辑),2004,34(6):535-543.
    [8]张明军,王圣杰,李忠勤,等.近50年气候变化背景下中国冰川面积状况分析[J].地理学报,2011,66(9):1155-1165.
    [9]方洪宾,赵福岳,张振德,等.青藏高原现代生态地质环境遥感调查与演变研究[M].北京:地质出版社,2009:78-105.
    [10]张瑞江,方洪宾,赵福岳.青藏高原近30年来现代冰川的演化特征[J].国土资源遥感,2010,22(增刊):49-53.
    [11]蒲健辰,姚檀栋,王宁练,等.近百年来青藏高原冰川的进退变化[J].冰川冻土,2004,26(5):517-522.
    [12]上官冬辉,刘时银,丁良福,等. 1970—2000年念青唐古拉山脉西段冰川变化[J].冰川冻土,2008,30(2):204-210.
    [13]冀琴,杨太保,田洪阵,等.念青唐古拉山西段近几年冰川与气候变化研究[J].干旱区资源与环境,2014,28(7):12-17.
    [14]姚晓军,刘时银,郭万钦,等.近50a来中国阿尔泰山冰川变化:基于中国第二次冰川编目成果[J].自然资源学报,2012,27(10):1734-1745.
    [15]王旭,周爱国,SIEGERT F,等.念青唐古拉山西段冰川1977—2010年时空变化[J].地球科学,2012,37(5):1082-1092.
    [16]刘时银,鲁安新,丁永建,等.黄河上游阿尼玛卿山区冰川波动与气候变化[J].冰川冻土,2002,24(6):701-707.
    [17]施雅风.简明中国冰川编目[M].上海:海科学普及出版社,2005:1-194.
    [18]刘时银,姚晓军,郭万钦,等.基于第二次冰川编目的中国冰川现状[J].地理学报,2015,70(1):3-16.
    [19]安国英,韩磊,黄树春,等.基于GF-1光谱数据的青藏地区冰川资源现状遥感调查[J].现代地质,2018,32(3):584-594.
    [20]国家气象信息中心.中国气象数据网数据服务[EB/OL].http://data. cma. cn/data/index/0b9164954813c573. html.
    [21] RADIC V,HOCK R. Regional and global volumes of glaciers derived from statistical up scaling of glacier inventory data[J].Journal of Geophysical Research,2010,115:F01010,doi:10.1029/2009JF001373.
    [22] GRINSTED A. An estimate of global glacier volume[J]. The Cryosphere,2013,7:141-151.
    [23]谢自楚,刘潮海.冰川学导论[M].上海:上海科学普及出版社,2010:135.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700