用户名: 密码: 验证码:
自然-社会水循环模型估算平原-丘陵-湿地区水稻种植潜力
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Rice planting potential in plain-hill-wetland area estimated by nature-society water cycle model
  • 作者:宫兴龙 ; 付强 ; 孙爱华 ; 关英红 ; 王斌 ; 李茉
  • 英文作者:Gong Xinglong;Fu Qiang;Sun Aihua;Guan Yinghong;Wang Bin;Li Mo;College of Water Conservancy and Civil Engineering, Northeast Agricultural University;
  • 关键词:水循环 ; 蒸发 ; 社会 ; 平原-丘陵-湿地区 ; 水稻种植潜力 ; 情景模式 ; 格子波尔兹曼法
  • 英文关键词:water cycle;;evaporation;;society;;plain-hill-wetland area;;rice planting potential;;scenario;;LBM
  • 中文刊名:农业工程学报
  • 英文刊名:Transactions of the Chinese Society of Agricultural Engineering
  • 机构:东北农业大学水利与土木工程学院;
  • 出版日期:2019-01-08
  • 出版单位:农业工程学报
  • 年:2019
  • 期:01
  • 基金:国家自然科学基金项目(51408107);; 黑龙江省科学基金项目(E2017009);; 农业水资源高效利用重点实验室的开放基金(KF201501)
  • 语种:中文;
  • 页:146-155
  • 页数:10
  • CN:11-2047/S
  • ISSN:1002-6819
  • 分类号:S511
摘要
自20世纪中叶以来在平原-丘陵-湿地区随着井灌水稻热的兴起,水稻种植面积急剧扩大甚至超过此类地区水稻种植潜力,引起了湿地面积萎缩、地下水水位下降和水质恶化等问题。为解决这些问题,该文构建自然-社会二元水循环模型揭示人类影响下的平原-丘陵-湿地区水循环机理,进而推算适宜的水稻种植面积。首先,利用数值法构建了基于栅格的分布式水文模型,然后在此模型中嵌入人类活动影响模型从而构建了二元水循环模型。根据水稻种植潜力阈值抽取河道水量极值、地下水最大埋深、地下水最大降深和最大地下水开采量等因素与旱田作物种类组合了18种情景模式。在满足控制阈值条件下,依据多年平均日降雨、蒸发和情景模式利用二元模型计算了各种情景的水田种植潜力,由潜力分析得:18种模式地下水最大埋深在5.17~7.49 m之间,地下水最大降深在1.67~3.73 m之间;水田处最大坡度范围0.028~0.053;河道引水量占河道水量的50%~70%;地下水开采比例在79%~112%间;水稻种植潜力为28.36万hm~2~54.12万hm~2,来自旱地面积为21.05万hm~2~40.32万hm~2,来自未利用地面积为5.68万hm~2~11.09万hm~2。以情景模式17为例在水田生育期内对河道生态需水量、地下水水位和旱地作物蒸发等进行了检验,验证得到:整个水稻生育期内分区流域地下水埋深均小于7.12m,开发水田的分区流域基流比最小值为33.45%,分区流域旱田平均蒸发与1990年土地类型情景下的分区流域旱田平均蒸发的比值大部分位于0.98~1.05,说明水稻生育期内情景17对河道水量和地下水水位的影响在控制范围内,对旱田蒸发影响比较小,因此情景模式17的水稻种植潜力是可行的。研究可为描述平原-丘陵-湿地区的水文循环过程和推求水田开发潜力提供依据。
        With the increasing of well irrigation for rice since the middle of 20 Century, planting area of plain-hill-wetland region has expanded rapidly over its planting potential. And this phenomenon has caused a series of problems, such as the shrinking of wetland area, the decline of groundwater level and the deterioration of water quality. In order to prevent these problems, a two element water cycle model should be constructed to reveal the water cycle mechanism of plain-hill-wetland area under the influence of human activities, and to calculate the suitable area of rice planting. A grid-based distributed hydrological model was constructed by numerical method. The absolute value of relative error between fitted and measured flood peak discharge was in the range of 1.71%-11.55%. The determination coefficient of flood process line was in the range of 0.67-0.85. It indicated that the model could well simulate the hydrological cycle process in the study area. And then a two element water cycle model was further constructed by embedding the influence of human activities. According to the threshold of rice planting potential, parameters such as the maximum groundwater depth and the maximum groundwater level drawdown were extracted. And 18 kinds of scenarios were constructed by different combinations of the parameters and crop species in dry land. The planting potential of paddy field under various scenarios was calculated using the two element model under the condition of satisfying the control threshold, according to mean annual rainfall, evaporation and scenarios. It is observed that the maximum groundwater depth was 5.17-7.49 m, the maximum groundwater level drawdown was 1.67-3.73 m, the maximum slope of the paddy field was in the range of 0.028-0.053, the river water division flow was 50%-70%, the ratio of groundwater extraction was 79%-112%, the rice planting potential was 2.836×105 hm~2-5.412×105 hm~2, the area from the dry land was 2.105×105 hm~2-4.032×105 hm~2, and the area from the unused land was 5.68×104-1.109×105 hm~2 for the 18 kinds of scenarios. Taking scenario 17 as an example, the river ecological water demand, groundwater depth and evaporation of dry land crops were tested during the growth stage of paddy fields. In the whole rice growing season, the groundwater depth was less than 7.12 m, and the minimum value of base flow ratio in the developed paddy field was 33.45%. The ratio of mean evaporation from dry land of subdivisions in scenario 17 to that under the same land use scenario in 1990 was in the range of 0.98-1.05. It indicated that the effect of scenario 17 on the river water and groundwater level in the rice growth period was within the control range, while the effect on the dry field was relatively small. Hence, the scenario 17 was the optimal one for application. Currently, the parameters such as hydrometeorology, hydrogeology, irrigation system and groundwater depth were not available. However, the water cycle model constructed in the present study could provide valuable information for describing the hydrological cycle process in plain-hill-wetland area and seeking the potential of paddy field development, based on the full use of the limited parameters.
引文
[1]刘吉平,杜保佳,盛连喜,等.三江平原沼泽湿地格局变化及影响因素分析[J].水科学进展,2017,28(1):22-31.Liu Jiping,Du Baojia,Sheng Lianxi,et al.Dynamic patterns of change in marshes in the Sanjiang Plain and their influential factors[J].Advances in Water Science,2017,28(1):22-31.(in Chinese with English abstract)
    [2]周浩,雷国平,杨雪昕,等.RCPs气候情景下三江平原典型流域耕地动态模拟[J].农业机械学报,2017,48(10):121-133.Zhou Hao,Lei Guoping,Yang Xuexin,et al.Simulation of Cultivated Land under RCPs Scenarios in Typical Basin of Sanjiang Plain[J].Transactions of the Chinese Society for Agricultural Machinery,2017,48(10):121-133.(in Chinese with English abstract)
    [3]曲艺,罗春雨,张弘强,等.基于历史生物多样性与湿地景观结构的三江平原湿地恢复优先性研究[J].生态学报,2018,38(16):5709-5716.Qu Yi,Luo Chunyu,Zhang Hongqiang,et al.Prioritization of wetland restoration in Sanjiang Plain,based on historical biodiversity and landscape structure[J].Acta Ecologica Sinica,2018,38(16):5709-5716.(in Chinese with English abstract)
    [4]危润初,肖长来,方樟.黑龙江建三江地区地下水动态趋势突变点分析.吉林大学学报:地球科学版,2016,46(1):202-210.Wei Runchu,Xiao Changlai,Fang Zhang.Trends mutation nodes of groundwater dynamic in Jiansanjiang area of Heilongjiang province[J].Journal of Jilin University:Earth Science Edition,2016,46(1):202-210.(in Chinese with English abstract)
    [5]周浩,雷国平,张博,等.1990-2013年挠力河流域耕地变化下水土资源平衡效应分析[J].农业工程学报,2015,31(1):272-280.Zhou Hao,Lei Guoping,Zhang Bo,et al.Farmland change induced land and water resource balance in Naoli River Basin from 1990 to 2013[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2015,31(1):272-280.(in Chinese with English abstract)
    [6]任守德,付强,王凯.基于宏微观尺度的三江平原区域农业水土资源承载力[J].农业工程学报,2011,27(2):8-14.Ren Shoude,Fu Qiang,Wang Kai.Regional agricultural water and soil resources carrying capacity based on macromicro scale in Sanjiang Plain[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2011,27(2):8-14.(in Chinese with English abstract)
    [7]王韶华,刘文朝,刘群昌.三江平原农业需水量及适宜水稻种植面积的研究[J].农业工程学报,2004,20(4):50-53.Wang Shaohua,Liu Wenchao,Liu Qunchang.Agricultural water consumption and suitable paddy rice plant areas of the Three-River-Plain[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2004,20(4):50-53.(in Chinese with English abstract)
    [8]赵清.三江平原建三江地区农业需水量及水稻生产潜力研究[J].现代农业科技,2009(9):185-188.
    [9]付强,梁川,杨广林.三江平原井灌水稻发展潜力探析[J].农业系统科学与综合研究,2002,18(1):23-26.
    [10]王浩,王建华,秦大庸,等.基于二元水循环模式的水资源评价理论方法[J].水利学报,2006,37(12):1496-1502.Wang Hao,Wang Jianhua,Qin Dayong,et al.Theory and methodology of water resources assessment based on dualistic water cycle model[J].Journal of Hydraulic Engineering,2006,37(12):1496-1502.(in Chinese with English abstract)
    [11]秦大庸,陆垂裕,刘家宏,等.流域“自然-社会”二元水循环理论框架[J].科学通报,2014,59(4/5):419-427.
    [12]谢新民,郭洪宇,唐克旺,等.华北平原区地表水与地下水统一评价的二元耦合模型研究[J].水利学报,2002,33(12):95-100.Xie Xinmin,Guo Hongyu,Tang Kewang,et al.Dual coupled model for integrated assessment of surface water and groundwater in North China Plain[J].Journal of Hydraulic Engineering,2002,33(12):95-100.(in Chinese with English abstract)
    [13]吴普特,高学睿,赵西宁,等.实体水-虚拟水“二维三元”耦合流动理论基本框架[J].农业工程学报,2016,32(12):1-10.Wu Pute,Gao Xuerui,Zhao Xining,et al.Framework of“two-dimension three-element”coupling flow of real water and virtual water[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2016,32(12):1-10.(in Chinese with English abstract)
    [14]张俊娥,陆垂裕,秦大庸,等.面向对象模块化的分布式水文模型MODCYCLEⅡ:模型应用篇[J].水利学报,2012,43(11):1287-1295.Zhang Jun'e,Lu Chuiyu,Qin Dayong,et al.MODCYCLE:An object oriented modularized hydrological modelⅡ.Application[J].Journal of Hydraulic Engineering,2012,43(11):1287-1295.(in Chinese with English abstract)
    [15]Beven K J,Kirkby M J.A physically based variable contributing area model of basin hydrology[J].Hydrological Science Bulletin,1979,24(1):43-69.
    [16]宫兴龙,芮孝芳,付强,等.基于格子玻尔兹曼方法的流域汇流数值模型[J].水力发电学报,2014,33(2):19-25.Gong Xinglong,Rui Xiaofang,Fu Qiang,et al.A numerical model of watershed concentration based on lattice boltzmann method[J].Journal of Hydroelectric Engineering,2014,33(2):19-25.(in Chinese with English abstract)
    [17]宫兴龙,付强,邢贞相,等.基于格子玻尔兹曼法的TOPMODEL建模与应用[J].农业机械学报,2015,46(7):181-186.Gong Xinglong,Fu Qiang,Xing Zhenxiang,et al.Modelling and application of TOPMODEL based on LBM[J].Transactions of the Chinese Society for Agricultural Machinery,2015,46(7):181-186.(in Chinese with English abstract)
    [18]宫兴龙,付强,王斌,等.丘陵-平原-湿地复合区降雨径流数值模型[J].农业机械学报,2016,47(11):142-149.Gong Xinglong,Fu Qiang,Wang Bin,et al.Numerical model of rainfall runoff in hills-plain-wetland compound area[J].Transactions of Chinese Society for Agricultural Machinery,2016,47(11):142-149.(in Chinese with English abstract)
    [19]张东辉.格子玻尔兹曼方法在水文学中的应用研究[D].南京:河海大学,2008.Zhang Donghui.Lattice Boltzmann Method and Some Application to Hydrology[D].Nanjing:Hohai University,2008.(in Chinese with English abstract)
    [20]Allen R G,Smith M,Pereira L S,et al.An update for the calculation of reference evapotranspiration[J].ICID Bulletin,1994,43(2):35-92.
    [21]Allen R G,Pereira L S,Raes D,et al.Crop evapotranspirationguidelines for computing crop water requirements[M]//FAOIrrigation and Drainage Paper 56.Rome:FAO,1998.
    [22]刘博,杨晓光,王式功.东北地区主要粮食作物气候生产潜力估算与分析[J].吉林农业科学,2012,37(3):57-60.Liu Bo,Yang Xiaoguang,Wang Shigong.Calculation and analysis of climate productive potential of major grain crops in Northeast China[J].Journal of Jilin Agricultural Sciences,2012,37(3):57-60.(in Chinese with English abstract)
    [23]中国主要农作物需水量等值线图协作组.中国主要农作物需水量等值线图研究[M].北京:中国农业科技出版社,1993:19-55.
    [24]刘钰,汪林,倪广恒,等.中国主要作物灌溉需水量空间分布特征[J].农业工程学报,2009,25(12):6-12.Liu Yu,Wang Lin,Ni Guangheng,et al.Spatial distribution characteristics of irrigation water requirement for main crops in China[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2009,25(12):6-12.(in Chinese with English abstract)
    [25]刘钰,Pereira L S.对FAO推荐的作物系数计算方法的验证[J].农业工程学报,2000,16(5):26-30.Liu Yu,Pereira L S.Validation of FAO methods for estimating crop coefficients[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2000,16(5):26-30.(in Chinese with English abstract)
    [26]郭利丹,夏自强,林虹,等.生态径流评价中的Tennant法应用[J].生态学报,2009,29(4):1788-1792.Guo Lidan,Xia Ziqiang,Lin Hong,et al.Researches on application of the tenant method in ecological flow evaluention[J].Acta Ecologica Sinica,2009,29(4):1788-1792.(in Chinese with English abstract)
    [27]彭世彰,艾丽坤,和玉璞,等.稻田灌排耦合的水稻需水规律研究[J].水利学报,2014,45(3):320-325.Peng Shizhang,Ai Likun,He Yupu,et al.Effect of irrigation and drainage coupling management on rice water requirement[J].Journal of Hydraulic Engineering,2014,45(3):320-325.(in Chinese with English abstract)
    [28]朱士江,孙爱华,张忠学.三江平原不同灌溉模式水稻需水规律及水分利用效率试验研究[J].节水灌溉,2009,28(11):12-14.Zhu Shijiang,Sun Aihua,Zhang Zhongxue.Experimental research on water consumption law and water using efficiency of paddy under different irrigation mode in Sanjiang Plain[J].Water Saving Irrigation,2009,28(11):12-14.(in Chinese with English abstract).
    [29]张惠斌,于东,姚章村.论“打井种稻”与“循环经济”[J].水利科技与经济,2006,12(2):819-821.Zhang Huibin,Yu Dong,Yao Zhangcun.Talk about“planting rice by constructing well for irrigation”and“cycle economy”[J].Water Conservancy Science and Technology and Economy,2006,12(2):819-821.(in Chinese with English abstract).
    [30]韩丽伟,付强,刘东,等.三江平原地下水承载能力综合评价模型的构建及其应用[J].水土保持研究,2010,17(2):182-185.Han Liwei,Fu Qiang,Liu Dong,et al.Construction and application of the model on groundwater resources carrying capacity in SanJiang plain[J].Research of Soil and Water Conservation,2010,17(2):182-185.(in Chinese with English abstract)
    [31]杨亚妹,王德文.三江平原地下水资源开发潜力研究[J].水利科技与经济,2011,17(8):74-77.Yang Yamei,Wang Dewen.Developed potential study of groundwater resources in Sanjiang Plain[J].Water Conservancy Science and Technology and Economy,2011,17(8):74-77.(in Chinese with English abstract)
    [32]尹喜霖,张烽龙,郑春晓.黑龙江省三江平原的地下水开发利用[J].黑龙江水专学报,2002,29(4):26-33.Yin Xilin,Zhang Fenglong,Zheng Chunxiao.Underground water development and utilization in Sanjiang Plain in Heilongjiang province[J].Journal of Heilongjiang Hydraulic Engineering College,2002,29(4):26-33.(in Chinese with English abstract)
    [33]王斌.黑龙江省粮食生产与耗水问题探讨[J].节水灌溉,2015,34(12):77-80.Wang Bin.A study on grain production and its water consumption in HeiLongJing province[J].Water Saving Irrigation,2015,34(12):77-80.(in Chinese with English abstract)
    [34]雷志栋,苏立宁,杨诗秀.青铜峡灌区水土资源平衡分析的探讨[J].水利学报,2002,33(6):9-14.Lei Zhidong,Su Lining,Yang Shixiu.Balance analysis of water resources in Qingtongxia Irrigation Area[J].Journal of Hydraulic Engineering,2002,33(6):9-14.(in Chinese with English abstract)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700