用户名: 密码: 验证码:
基于SEBAL模型的疏勒河流域蒸散量时空动态
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Spatiotemporal Dynamics of Evapotranspiration in Shule River Basin Based on SEBAL Model
  • 作者:周妍妍 ; 郭晓娟 ; 郭建军 ; 曾建军 ; 陈冠光 ; 邹明亮 ; 岳东霞
  • 英文作者:ZHOU Yanyan;GUO Xiaojuan;GUO Jianjun;ZENG Jianjun;CHEN Guanguang;ZOU Mingliang;YUE Dongxia;College of Earth and Environmental Sciences,Lanzhou University;Key Laboratory of Desert and Desertification,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences;
  • 关键词:蒸散量 ; SEBAL模型 ; 时空变化 ; 疏勒河流域
  • 英文关键词:evapotranspiration;;SEBAL model;;spatial and temporal variation;;Shule River Basin
  • 中文刊名:水土保持研究
  • 英文刊名:Research of Soil and Water Conservation
  • 机构:兰州大学资源环境学院;中国科学院西北生态环境资源研究院沙漠与沙漠化重点实验室;
  • 出版日期:2019-01-10
  • 出版单位:水土保持研究
  • 年:2019
  • 期:01
  • 基金:甘肃省国际科技合作专项(1604WKCA002);; 国家自然科学基金(41671516;41701623);; 甘肃省软科学专项(1504ZKCA090-1);; 中科院西北生态环境资源研究院青年人才成长基金
  • 语种:中文;
  • 页:174-183
  • 页数:10
  • CN:61-1272/P
  • ISSN:1005-3409
  • 分类号:P339;P426.2
摘要
蒸散发(Evapotranspiration,ET)是重要的生态水文过程,尤其是在干旱和半干旱地区,对环境变化起着至关重要的作用。以疏勒河流域为例,利用DEM,MODIS和气象数据,基于能量平衡原理的SEBAL(Surface Energy Balance Algorithms for Land)模型,运用ArcGIS软件在栅格尺度上反演出该流域的地表蒸散量,并探究其时空变化特征。结果显示:(1)疏勒河流域2000—2015年8月基于栅格的地表多年平均日蒸散量变化范围为0~8.52mm,空间差异十分显著,从东南向西北呈现逐渐减少趋势,上游蒸散量大于中下游区域;(2)2000—2015年疏勒河流域大部分地区的8月份地表月蒸散量呈减小趋势;(3)疏勒河流域2000—2015年8月份地表月蒸散量时空变异显著,中、上游地区蒸散量较大且时间稳定性差;(4)2015年4个月份地表月蒸散量变化显著(7月>4月>10月>1月),但其空间分布格局相似。研究蒸散量的时空动态定量评价结果对于疏勒河流域的环境模拟、气候变化研究、灌溉和水资源管理,以及深入了解我国干旱半干旱气候区水循环机理具有重要意义。
        Evapotranspiration(ET)is an important ecological hydrological process,especially in arid and semi-arid areas,which plays a vital role in environmental change studies.Based on the energy balance principle SEBAL(Surface Energy Balance Algorithms for Land)model in Shule River Basin with DEM,MODIS and meteorological data,we applied ArcGIS software to estimate the ET value of the basin based on the grid scale,and explored characteristics of temporal and spatial variation of ET.The results showed that:(1)the spatial variation range of mean daily ET values in August was 0~8.52 mm on the grid of over Shule River Basin during the period from 2000 to 2015,which had a significant difference in spatial patterns;SEBAL model also showed that spatial patterns of mean daily ET gradually decreased from the southeast to the northwest of Shule River Basin,and that the mean daily ET in the upper reaches of Shule River was greater than ET in the middle and lower reaches of Shule River;(2)the monthly ET of August in 2000—2015 showed the decreasing tendency in most areas over Shule River Basin;(3)the monthly ET and the time stability of value of August in the middle and upper reaches in 2000—2015 were higher than those in the lower reaches,and the spatial difference was significant;(4)the monthly ETs of the four months in 2015 changed significantly,the valuedecreased in the order:July>April>October>January,and ETs had similar spatial pattern.The quantitative evaluation on temporal and spatial dynamic of ET has an important significance for the environmental simulation,climate change research,irrigation and water resources management in Shule River Basin in order to gain a better understanding of the mechanism of water cycle in arid and semiarid climate zone.
引文
[1] Yassin M A,Alazba A A,Mattar M A.Artificial neural networks versus gene expression programming for estimating reference evapotranspiration in arid climate[J].Agricultural Water Management,2016,163(1):110-124.
    [2] Zhuang Q,Wu B.Estimating evapotranspiration from an improved two-source energy balance model using ASTER satellite imagery[J].Water,2015,7(12):6673-6688.
    [3] Bastiaanssen W G M,Menenti M,Feddes R A,et al.The surface energy balance algorithm for land(SEBAL):Part 1formulation[J].Journal of Hydrology,1998,212(98):198-212.
    [4] Allen R G,Little D N,Bhasin A.Structural characterization of micromechanical properties in asphalt using atomic force microscopy[J].Journal of Materials in Civil Engineering,2012,24(10):1317-1327.
    [5] Almhab A,Busu I,Cracknell A.Comparison of regional scale evapotranspiration using NOAA-AVHRR and LANDSAT-TM images:A case study in an arid area in the Sana′a Basin[C].Republic of Yemen,2007:3101-3106.
    [6] Kiptala J K,MohamedY,Mul M L,et al.Mapping evapotranspiration trends using MODIS and SEBAL model in a data scarce and heterogeneous landscape in Eastern Africa[J].Water Resources Research,2013,49(12):8495-8510.
    [7] Ma H W,Wang N A,Zhu J F,et al.Analysis of evapotranspiration using satellite remote and its sensitivity in Shiyang River Basin[J].Journal of Water Resources&Water Engineering,2010,21(6):76-80.
    [8]乔平林,张继贤,王翠华.石羊河流域蒸散发遥感反演方法[J].干旱区资源与环境,2007,21(4):107-110.
    [9]马宏伟.石羊河流域蒸散发遥感反演及生态需水研究[D].兰州:兰州大学,2011.
    [10]刘春雨,赵军,刘英英,等.石羊河流域蒸散发量遥感估算及时空格局分析[J].国土资源遥感,2011,23(3):117-122.
    [11] Li S B,Zhao W Z.Satellite-based actual evapotranspiration estimation in the middle reach of the Heihe River Basin using the SEBAL method.[J].Hydrological Processes,2010,24(23):3337-3344.
    [12]周彦昭,周剑,李妍,等.利用SEBAL和改进的SEBAL模型估算黑河中游戈壁、绿洲的蒸散发[J].冰川冻土,2014,36(6):1526-1537.
    [13]曾成强.黑河流域地表蒸散量研究[D].兰州:兰州交通大学,2014.
    [14]张万昌,刘三超,蒋建军,等.基于GIS技术的黑河流域地表通量及蒸散发遥感反演[J].海洋科学进展,2004,22(10):138-145.
    [15]邓志民,张翔,罗蔚.基于MODIS的SEBAL模型在流域蒸散发反演中的应用[J].水电能源科学,2012,30(12):6-9.
    [16] Chang Y,DingY,Zhao Q,et al.Remote estimation of terrestrial evapotranspiration by Landsat 5TM and the SEBAL model in cold and high‐altitude regions:A case study of the upper reach of the Shule River Basin,China[J].Hydrological Processes,2016,31(3):514-524.
    [17]吴锦奎,陈军武,吴灏,等.疏勒河上游高寒草甸蒸散对比研究[J].地理科学,2013,33(1):97-103.
    [18]吕晓东,王鹤龄,马忠明.河西内陆河流域参考作物蒸散量的时空特征[J].应用生态学报,2010,21(12):3161-3167.
    [19]代慧慧.疏勒河流域气候变化对径流的影响分析[D].北京:清华大学,2015.
    [20]刘建军.疏勒河流域水资源利用中存在的问题及对策分析[J].甘肃农业,2010,285(4):18-20.
    [21]鲍平勇.半干旱区域日蒸散发估算的遥感研究[D].南京:河海大学,2007.
    [22]詹志明.区域遥感蒸散发模型方法研究[J].遥感技术与应用,2002,17(6):364-368.
    [23] Tasumi M.Application of the SEBAL methodology for estimating consumptive use of water and stream flow depletion in the Bear River Basin of Idaho through remote sensing[R].Appendix C:A Step-by-Step Guide to Running Sebal,2000.
    [24]刘志武,雷志栋,党安荣,等.遥感技术和SEBAL模型在干旱区腾发量估算中的应用[J].清华大学学报:自然科学版,2004,44(3):421-424.
    [25] Thom A S,Oliver H R.On Penman′s equation for estimating regional evaporation[J].Quarterly Journal of the Royal Meteorological Society,1997,103(436):345-357.
    [26] Wu C D,Cheng C C,Lo H C,et al.Application of SEBAL and Markov models for future stream flow simulation through remote sensing[J]. Water Resources Management,2010,24(14):3773-3797.
    [27]李宝富,陈亚宁,李卫红,等.基于遥感和SEBAL模型的塔里木河干流区蒸散发估算[J].地理学报,2011,66(9):1230-1238.
    [28] Allen R G,Pereira L S,Raes D,et al.Crop evapotranspiration-guidelines for computing crop water requirements[R].Fao,1998.
    [29] Vachaud G,Passerat D S A,Balabanis P,et al.Temporal stability of spatially measured soil water probability density function1[J].Soil Science Society of America Journal,1985,49(4):822-828.
    [30]杨秀芹,王国杰,叶金印,等.基于GLEAM模型的淮河流域地表蒸散量时空变化特征[J].农业工程学报,2015,31(9):133-139.
    [31]热孜宛古丽·麦麦提依明.艾比湖流域蒸散时空变化及遥感估算[D].乌鲁木齐:新疆大学,2016.
    [32] Li F,Lyons T J.Remote estimation of regional evapotranspiration[J].Environmental Modelling&Software,2002,17(1):61-75.
    [33]曾丽红,宋开山,张柏,等.2000—2008年松嫩平原生长季蒸散量时空格局及影响因素分析[J].资源科学,2010,32(12):2305-2315.
    [34]齐敬辉,牛叔文,马利邦,等.2000—2014年疏勒河流域植被覆盖时空变化[J].生态与农村环境学报,2016,32(5):757-766.
    [35]钱大文.近37年疏勒河中下游土地利用时空变化及其综合生态效应[D].兰州:兰州大学,2015.
    [36]于国斌,李忠勤,王璞玉.近50a祁连山西段大雪山和党河南山的冰川变化[J].干旱区地理:汉文版,2014,37(2):299-309.
    [37]李文卿,胡自治,龙瑞军,等.甘肃省退牧还草工程实施绩效、存在问题和对策[J].草业科学,2007,24(1):1-6.
    [38]曾国雄.敦煌生态环境问题与保护对策研究[J].中国水利,2013(17):50-52.
    [39] Guo J,Yue D,Li K,et al.Biocapacity optimization in regional planning[J].Scientific Reports,2017,7:41150.
    [40]夏虹,武建军,范锦龙.阴山北麓地区近20年来植被生长状况及其年际变化研究[J].北京师范大学学报:自然科学版,2007,43(6):678-683.
    [41]岳东霞,杜军,巩杰,等.民勤绿洲农田生态系统服务价值变化及其影响因子的回归分析[J].生态学报,2011,31(9):2567-2575.
    [42] Yue D X,Hui C.Value flow,livestockstructure,optimalcontrol management and sustainable development of ecological economic system in alpine meadow[J].Actabotanicaboreali-Occidentalia Sinica,2004,24(3):437-442.
    [43]吴鹏亮.基于改进型SEBAL模型的区域蒸散研究[D].安徽淮南:安徽理工大学,2016.
    [44]曾丽红,宋开山,张柏,等.2000—2008年松嫩平原生长季蒸散量时空格局及影响因素分析[J].资源科学,2010,32(12):2305-2315.
    [45]达日玛.基于MODIS数据的区域蒸散发量遥感估算及其应用:以巴彦淖尔市为例[D].呼和浩特:内蒙古师范大学,2010.
    [46]潘竞虎,刘春雨.基于TSEB平行模型的黄土丘陵沟壑区蒸散发遥感估算[J].遥感技术与应用,2010,25(2):183-188.
    [47] Allen R G,Bastiaanssen W,Tasumi M,et al.Evapotranspiration on the watershed scale using the SEBAL model and Landsat images[C]∥2001 ASAE Annual Meeting,1998.
    [48] Chen Y H,Xiao B L,Shi P J.Regional evapotranspiration estimation over northwest China using remote sensing[J].Acta Geographica Sinica-Chinese Edition,2001,56(3):268-276.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700