用户名: 密码: 验证码:
郑州市PM_(2.5)中水溶性离子特征及来源分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Characteristics and Source Analysis of Water-Soluble Ions in PM_(2.5) in Zhengzhou
  • 作者:杨留明 ; 王申博 ; 郝祺 ; 韩士杰 ; 李晨 ; 赵庆炎 ; 燕启社 ; 张瑞芹
  • 英文作者:YANG Liu-ming;WANG Shen-bo;HAO Qi;HAN Shi-jie;LI Chen;ZHAO Qing-yan;YAN Qi-she;ZHANG Rui-qin;College of Chemistry and Molecular Engineering,Zhengzhou University;Research Institute of Environmental Science,Zhengzhou University;
  • 关键词:在线 ; PM2.5 ; 水溶性离子 ; 季节变化 ; 二次转化 ; 来源解析
  • 英文关键词:on-line;;PM2.5;;water-soluble ions;;seasonal variation;;secondary transformation;;source identification
  • 中文刊名:环境科学
  • 英文刊名:Environmental Science
  • 机构:郑州大学化学与分子工程学院;郑州大学环境科学研究院;
  • 出版日期:2019-02-25 17:04
  • 出版单位:环境科学
  • 年:2019
  • 期:07
  • 基金:国家重点研发计划项目(2017YFC0212400)
  • 语种:中文;
  • 页:19-26
  • 页数:8
  • CN:11-1895/X
  • ISSN:0250-3301
  • 分类号:X513
摘要
为探究郑州市PM_(2.5)中水溶性离子污染特征,本研究自2017年12月1日至2018年11月30日对郑州市PM_(2.5)中水溶性离子进行为期1a的高时间分辨率持续观测,并基于高时间分辨率观测数据分析水溶性离子特征并对其进行来源分析.结果表明,观测期间郑州市总水溶性离子平均质量浓度为42. 7μg·m~(-3),各离子质量浓度从大到小分别为:硝酸根(17. 7μg·m~(-3))、硫酸根(10. 2μg·m~(-3))、铵根(9. 0μg·m~(-3))、氯离子(2. 3μg·m~(-3))、钾离子(1. 3μg·m~(-3))、钠离子(1. 3μg·m~(-3))、钙离子(0. 8μg·m~(-3))和镁离子(0. 1μg·m~(-3)).总水溶性离子质量浓度表现为冬季最高,秋季略高于春季,夏季最低的季节特征,在PM_(2.5)中的占比表现为秋季(65. 2%)>冬季(52. 5%)>夏季(48. 2%)>春季(43. 0%).除钠离子和钙离子外,其余水溶性离子质量浓度均表现为冬季>秋季>春季>夏季的季节变化特征,而钠离子表现为秋季最高,夏季最低的季节变化特征,钙离子表现为秋季最高,冬季最低的季节变化特征.总水溶性离子质量浓度全年及春季、夏季和秋季均表现为单峰分布的日变化特征,冬季没有显著的日变化特征.观测期间二次离子(硫酸根、硝酸根和铵根)质量浓度占PM_(2.5)的43. 8%,是PM_(2.5)的重要组成部分,主要以(NH4)2SO4和NH4NO3的形式存在.观测期间郑州市存在较大程度的二次转化过程,且相对湿度对硫氧化率的影响较大,而温度对氮氧化率的影响较大.观测期间二次离子间具有较好的相关性,钾离子与镁离子和氯离子也表现出较好的相关性.硝酸根、硫酸根和铵根的主要来源是气体污染物的二次转化,镁离子和钙离子通常来源于土壤尘和建筑尘,钾离子是主要的生物质燃烧标识物之一,钠离子来自于海盐和土壤尘,氯离子不仅来自于海盐,也可来自生物质燃烧和化石燃料燃烧.主成分分析结果表明观测期间郑州市PM_(2.5)中水溶性离子主要受二次转化、燃烧源及土壤或建筑扬尘源排放影响.
        In order to explore the pollution characteristics of water-soluble ions in PM_(2.5) in Zhengzhou,high time resolution and continuous observation of water-soluble inorganic ions in PM_(2.5) was conducted from December 1,2017,to November 30,2018,in Zhengzhou. The results showed that during the observation period,the average concentration of total water-soluble ions in Zhengzhou was 42. 7 μg·m~(-3). The order of mass concentration of each ion,from large to small,was as follows: NO3-( 17. 7 μg·m~(-3)),SO_4~(2-)( 10. 2 μg·m~(-3)),NH4+( 9. 0 μg·m~(-3)),Cl-( 2. 3 μg·m~(-3)),K+( 1. 3 μg·m~(-3)),Na+( 1. 3 μg·m~(-3)),Ca2 +( 0. 8 μg·m~(-3)),and Mg2 +( 0. 1 μg·m~(-3)). The mass concentration of total water-soluble ions was the highest in winter,slightly higher in autumn than in spring,and lowest in summer. The diurnal variation in single peak distribution was observed across the whole year in spring,summer,and autumn,while there was no significant diurnal variation in winter. The mass concentration of secondary inorganic ions( SO_4~(2-),NO_3~-,and NH_4~+) accounted for 43. 8% of PM_(2.5),mainly in the form of( NH4)2 SO_4 and NH_4 NO_3. There was a large degree of secondary transformation throughout the observation period; relative humidity had a significant influence on the sulfur oxidation rate,and temperature had a significant influence on the nitrogen oxidation rate. During the observation period,there was a good correlation between secondary ions,and K+showed a good correlation with Mg~(2+) and Cl~-. The main source of the secondary ions was the secondary conversion of gaseous pollutants. Mg~(2+) and Ca~(2+) were derived from soil dust and construction dust. K+was one of the main biomarkers of biomass combustion. Na+was mainly derived from sea salt and soil dust,and Cl~-was derived not only from sea salt but also biomass and fossil fuel combustion. The results of principal component analysis showed that the water-soluble ions in PM_(2.5) in Zhengzhou were mainly affected by secondary transformation,combustion sources,and dust emission from soil or building construction.
引文
[1] Li W J,Zhang D Z,Shao L Y,et al. Individual particle analysis of aerosols collected under haze and non-haze conditions at a high-elevation mountain site in the North China plain[J].Atmospheric Chemistry and Physics,2011,11(22):11733-11744.
    [2] Guo S,Hu M,Zamora M L,et al. Elucidating severe urban haze formation in China[J]. Proceedings of the National Academy of Sciences of the United States of America,2014,111(49):17373-17378.
    [3]吴兑,刘啟汉,梁延刚,等.粤港细粒子(PM2. 5)污染导致能见度下降与灰霾天气形成的研究[J].环境科学学报,2012,32(11):2660-2669.Wu D,Lau A K H,Leung Y K,et al. Hazy weather formation and visibility deterioration resulted from fine particulate(PM2. 5)pollutions in Guangdong and Hong Kong[J]. Acta Scientiae Circumstantiae,2012,32(11):2660-2669.
    [4]蒋琳,朱彬,王红磊,等.霾与轻雾天气下水溶性离子的组分特征———冬季长江三角洲地区一次污染过程分析[J].中国环境科学,2017,37(10):3601-3610.Jiang L,Zhu B,Wang H L,et al. Characteristics of watersoluble ions in the haze and mist days in winter in Yangtze River Delta[J]. China Environmental Science,2017,37(10):3601-3610.
    [5]李永麒,张国斌.太原市春季大气PM2. 5中水溶性离子在线观测分析[J].环境化学,2017,36(8):1777-1784.Li Y Q,Zhang G B. Continuous online observation analysis of water-soluble ions in PM2. 5from the atmosphere in spring in Taiyuan[J]. Environmental Chemistry,2017,36(8):1777-1784.
    [6] Liu J,Wu D,Fan S J,et al. A one-year,on-line,multi-site observational study on water-soluble inorganic ions in PM2. 5over the Pearl River Delta region,China[J]. Science of the Total Environment,2017,601-602:1720-1732.
    [7] Zhang R,Sun X S,Shi A J,et al. Secondary inorganic aerosols formation during haze episodes at an urban site in Beijing,China[J]. Atmospheric Environment,2018,177:275-282.
    [8]高嵩,程迪,任晓宇,等.应用高分辨率在线大气与气溶胶检测系统监测分析南京北郊PM2. 5中水溶性离子特征[J].科学技术与工程,2018,18(5):331-340.Gao S,Cheng D,Ren X Y,et al. Analysis of water-soluble ion characteristics of PM2. 5in the north suburb of Nanjing based on high-resolution monitor for aerosols and gases in ambient air monitoring[J]. Science Technology and Engineering,2018,18(5):331-340.
    [9]中华人民共和国生态环境部. 2017中国生态环境状况公报[EB/OL]. http://www. mee. gov. cn/gkml/sthjbgw/qt/201805/W020180531606576563901. pdf,2018-05-22.
    [10]张胜华,黄伊宁,毛文文,等.上海大气颗粒物中无机离子的粒径分布及其季节变化[J].环境科学学报,2019,39(1):72-79.Zhang S H,Huang Y N,Mao W W,et al. Seasonal variations of the size distributions of inorganic ions in the atmospheric particles in Shanghai[J]. Acta Scientiae Circumstantiae,2019,39(1):72-79.
    [11] Huang X J,Liu Z R,Zhang J K,et al. Seasonal variation and secondary formation of size-segregated aerosol water-soluble inorganic ions during pollution episodes in Beijing[J].Atmospheric Research,2016,168:70-79.
    [12]王念飞,陈阳,郝庆菊,等.苏州市PM2. 5中水溶性离子的季节变化及来源分析[J].环境科学,2016,37(12):4482-4489.Wang N F,Chen Y,Hao Q J,et al. Seasonal variation and source analysis of the water-soluble inorganic ions in fine particulate matter in Suzhou[J]. Environmental Science,2016,37(12):4482-4489.
    [13] Jiang N, Guo Y, Wang Q, et al. Chemical composition characteristics of PM2. 5in three cities in Henan,central China[J]. Aerosol and Air Quality Research,2017,17(10):2367-2380.
    [14]方团团.浙江沿海某城市大气PM2. 5中水溶性离子组分特征及其影响因素[D].杭州:浙江大学,2016. 1-71.
    [15]刘景云.北京及周边地区大气细颗粒物中水溶性离子的理化特征及来源解析[D].北京:北京化工大学,2017. 1-80.
    [16] Ram K,Sarin M M. Day-night variability of EC,OC,WSOC and inorganic ions in urban environment of Indo-Gangetic Plain:Implications to secondary aerosol formation[J]. Atmospheric Environment,2011,45(2):460-468.
    [17] Yao X H,Chan C K,Fang M,et al. The water-soluble ionic composition of PM2. 5in Shanghai and Beijing, China[J].Atmospheric Environment,2002,36(26):4223-4234.
    [18]高嵩,范美益,曹芳,等.基于高分辨率在线气溶胶监测仪数据分析南京北郊冬季PM2. 5中水溶性离子污染特性[J].科学技术与工程,2018,18(11):337-342.Gao S,Fan M Y,Cao F,et al. Characteristics and source of water soluble inorganic ions in PM2. 5based on high resolution MARGA data in Nanjing[J]. Science Technology and Engineering,2018,18(11):337-342.
    [19] Hsu C Y,Chiang H C,Chen M J,et al. Ambient PM2. 5in the residential area near industrial complexes:Spatiotemporal variation,source apportionment,and health impact[J]. Science of the Total Environment,2017,590-591:204-214.
    [20] Ming L L,Jin L,Li J,et al. PM2. 5in the Yangtze River Delta,China:Chemical compositions,seasonal variations,and regional pollution events[J]. Environmental Pollution,2017,223:200-212.
    [21] Pathak R K,Yao X H,Chan C K. Sampling artifacts of acidity and ionic species in PM2. 5[J]. Environmental Science&Technology,2004,38(1):254-259.
    [22] Pathak R K, Chan C K. Inter-particle and gas-particle interactions in sampling artifacts of PM2. 5in filter-based samplers[J]. Atmospheric Environment,2005,39(9):1597-1607.
    [23] Wang Y,Zhuang G S,Tang A H,et al. The ion chemistry and the source of PM2. 5aerosol in Beijing[J]. Atmospheric Environment,2005,39(21):3771-3784.
    [24]陈仕意,曾立民,董华斌,等.华北地区乡村站点(曲周)夏季PM2. 5中二次无机组分的生成机制与来源解析[J].环境科学,2015,36(10):3554-3565.Chen S Y, Zeng L M, Dong H B, et al. Transformation mechanism and sources of secondary inorganic components in PM2. 5at an agriculture site(Quzhou)in the North China Plain in summer[J]. Environmental Science,2015,36(10):3554-3565.
    [25] Geng N B,Wang J,Xu Y F,et al. PM2. 5in an industrial district of Zhengzhou,China:Chemical composition and source apportionment[J]. Particuology,2013,11(1):99-109.
    [26]闫广轩,张靖雯,雷豪杰,等.郑州市大气细颗粒物中水溶性离子季节性变化特征及其源解析[J].环境科学,2019,40(4):1545-1552.Yan G X,Zhang J W,Lei H J,et al. Seasonal variation and source analysis of the water-soluble inorganic ions in fine particulate matter in Zhengzhou[J]. Environmental Science,2019,40(4):1545-1552.
    [27] Li X H,Wang S X,Duan L,et al. Particulate and trace gas emissions from open burning of wheat straw and corn Stover in China[J]. Environmental Science&Technology,2007,41(17):6052-6058.
    [28]沈建东,焦荔,何曦,等.杭州城区春节PM2. 5中水溶性离子在线观测[J].中国环境监测,2014,30(2):151-157.Shen J D,Jiao L,He X,et al. Online Measurement of the water-soluble ions in PM2. 5during Spring Festival in Hangzhou[J]. Environmental Monitoring in China,2014,30(2):151-157.
    [29]马莹,吴兑,刘建.珠三角春节期间PM2. 5及水溶性离子成分的变化———以2012年为例[J].中国环境科学,2016,36(10):2890-2895.Ma Y,Wu D,Liu J. The characteristics of PM2. 5and its water soluble ions during Spring Festival in PRD in 2012[J]. China Environmental Science,2016,36(10):2890-2895.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700