用户名: 密码: 验证码:
早白垩世存在刚性/准刚性大印度板块的古地磁学新证据
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:New paleomagnetic positive proof of the rigid or quasi-rigid Greater Indian Plate during the Early Cretaceous
  • 作者:张也 ; 黄宝春 ; 赵千
  • 英文作者:Ye Zhang;Baochun Huang;Qian Zhao;Key Laboratory of Orogenic Belt and Crustal Evolution, Ministry of Education, School of Earth and Space Sciences, Peking University;
  • 关键词:特提斯喜马拉雅 ; 大印度板块 ; 早白垩世 ; 古地磁学 ; 印欧碰撞 ; 刚性板块
  • 英文关键词:Tethyan Himalaya;;Greater Indian Plate;;Early Cretaceous;;Paleomagnetism;;India-Asia collision;;rigid/quasirigid plate
  • 中文刊名:科学通报
  • 英文刊名:Chinese Science Bulletin
  • 机构:北京大学地球与空间科学学院造山带与地壳演化教育部重点实验室;
  • 出版日期:2019-06-26 14:02
  • 出版单位:科学通报
  • 年:2019
  • 期:21
  • 基金:中国科学院战略性先导科技专项(B类)(XDB03010100)资助
  • 语种:中文;
  • 页:69-88
  • 页数:20
  • CN:11-1784/N
  • ISSN:0023-074X
  • 分类号:P318.44
摘要
白垩纪期间特提斯喜马拉雅地块与印度克拉通之间的构造关系,是正确认识印度与欧亚大陆碰撞(简称印欧碰撞)模式的关键.本研究通过对特提斯喜马拉雅东部浪卡子县工布学乡下白垩统桑秀组岩石的系统古地磁学和年代学研究,结合早白垩世冈瓦纳大陆的重建和印度板块白垩纪的运动轨迹,在对比分析特提斯喜马拉雅地块早白垩世以来古地磁数据的基础上,提出印欧初始碰撞前存在一个刚性/准刚性的大印度板块,印欧碰撞仍为经典的陆陆碰撞.首先,对采样剖面顶部砂岩和底部安山岩的U-Pb锆石年代学研究限定了桑秀组火山岩的喷发年龄为早白垩世的~134 Ma.其次,岩石磁学研究表明携带高温(高场)特征剩磁分量的主要磁性载体为磁铁矿和钛磁铁矿;进一步古地磁测试分析在采样剖面褶皱两翼共23个采点中获得了可靠的特征剩磁组分,经相邻熔岩流古地磁方向去重检验后的特征剩磁平均方向和对应古地磁极位置分别为D*/I*=308.7°/-57.6°, k=29.5,α95=8.5°(N=11)和6.3°N,308.6°E(A95=9.1°).特征剩磁分量在99%置信水平上通过了褶皱检验和地球磁场长期变模型的检验,指示其为早白垩世末期区域褶皱形成之前获得的剩磁组分,并有效地平均掉了古地球磁场的长期变化.因此,该特征剩磁组分很可能代表了桑秀组火山岩形成时获得的原生剩磁.结果表明,早白垩世特提斯喜马拉雅地块的观测古纬度和古磁偏角与由同时期印度板块古地磁参考极计算获得的期望古纬度和古磁偏角完全一致,指示藏南桑秀组火山岩形成时期特提斯喜马拉雅与印度克拉通之间具有刚性/准刚性板块的特征.
        Identifying when, where, and how the Indian Plate or the Greater Indian Plate and the Asia continent collided is the most important three key issues for constructing a collision model, and it is also the starting basis for the further understanding of continental dynamics in the Tibetan Plateau. In the past decades, with the deepening of paleomagnetic studies on the terranes or blocks on both sides of the Indus-Yarlung Zangbo suture zone, the blank or deficiency of available paleomagnetic data from the Lhasa and Tethyan Himalaya blocks around the India-Asia collision has been largely filled.However, the timing and paleo-position of the collision between India and Asia still remains controversial on account of the discrepancy of the paleolatitudes of the Lhasa block during the Cretaceous to Eocene times. Meanwhile, tectonic relationship between the Tethyan Himalaya Terrane and the Indian Craton during the Cretaceous period is a key issue to better understanding the collision pattern between India and Asia. Whether or not the Tethyan Himalaya Terrane or the Himalayas kept a rigid or quasi-rigid connection with the Indian Craton, i.e. the Tethyan Himalaya Terrane or the Himalayas and the Indian Craton behaved as a rigid or quasi-rigid plate before the India-Asia collision, plays a key issue for the construction of the India-Asia collision model. In this study we report a combined paleomagnetic and geochronological investigation on the Lower Cretaceous Sangxiu Formation basalts and andesites from the Tethyan Himalaya located in the south of the Gongbuxue Village, Langkazi Country. In the light of the paleogeographic reconstruction of major plates and/or blocks of Gondwana at ~130 Ma, northwards-motion pattern of the Indian Plate during the Cretaceous, as well as published available post-Early Cretaceous paleomagnetic data from Tethyan Himalaya, we confidently argue that the Indian Craton and its northern Himalayas should behave as a rigid or quasi-rigid Greater Indian Plate prior to the India and Asia collision, and the archetypical India-Asia continental collision model is still a convincing scenario. Firstly, the U-Pb zircon chronological dating of the sandstone and andesite samples at the top and bottom of the sampling section yields weighted mean~(206) Pb/~(238) U ages of(136±2) and(133.7±1.6) Ma, respectively, suggesting an eruption age of ~134 Ma of the Early Cretaceous for the sampled Sangxiu Formation volcanic rocks. Secondly, rock magnetic results indicate that the hightemperature or high-field characteristic remanent magnetization(ChRM) components are carried predominately by magnetite and titanomagnetite. As a result, the ChRM directions, successively isolated from a total of 23 sampling sites in both limbs of an anticline, yield a mean direction of D/I=303°/-60.5°(k=48.5, α95=4.4°) after the tilt adjustment,corresponding to a paleomagnetic pole at 1.6°N, 309.5°E(A95=5.4°). Further site-by-site assessing of the serial correlation between adjacent lava flows indicates that the available site-mean observations could be reorganized into 5 directional groups(DGs) and 6 independent site-mean directions, which yield a new formation-mean ChRM direction and a corresponding paleomagnetic pole of D*/I*=308.7°/-57.6°(k=29.5, α95=8.5°) and of 6.3°N, 308.6°E(A_(95)=9.1°),respectively. Positive fold test and paleosecular variation test results show a pre-folding origin of the ChRM and effectively averaging out the paleosecular variation. A comparison between the observed Early Cretaceous paleomagnetic results and those expected from coeval apparent polar wander path for the Indian Plate shows that the Tethyan Himalaya Terrane has compatible paleolatitude and paleo-declination with the Indian Plate during the Early Cretaceous times, indicating that the Indian Plate and its northern Himalayas should behave as a rigid or quasi-rigid Greater Indian Plate during the formation of the Sangxiu Formation volcanic rocks.
引文
1 Yin A,Harrison T M.Geologic evolution of the Himalayan-Tibetan orogen.Annu Rev Earth Planet Sci,2000,28:211-280
    2 Allégre C J,Courtillot V,Tapponnier P,et al.Structure and evolution of the Himalaya-Tibet orogenic belt.Nature,1984,307:17-22
    3 Chang C F,Chen N S,Coward M P,et al.Preliminary conclusions of the Royal Society and Academia Sinica 1985 geotraverse of Tibet.Nature,1986,323:501-507
    4 Le Pichon X,Fournier M,Jolivet L.Kinematics,topography,shortening,and extrusion in the India-Eurasia collision.Tectonics,1992,11:1085-1098
    5 Tapponnier P,Peltzer G,Le Dain A Y,et al.Propagating extrusion tectonics in Asia:New insights from simple experiments with plasticine.Geology,1982,10:611
    6 Johnson M R W.Shortening budgets and the role of continental subduction during the India-Asia collision.Earth-Sci Rev,2002,59:101-123
    7 Wu F Y,Huang B C,Ye K,et al.Collapsed Himalayan-Tibetan orogen and the rising Tibetan Plateau(in Chinese).Acta Petrol Sin,2008,24:1-30[吴福元,黄宝春,叶凯,等.青藏高原造山带的垮塌与高原隆升.岩石学报,2008,24:1-30]
    8 Huang B C,Zhou Y X,Zhu R X.Discussions on Phanerozoic evolution and formation of continental China,based on paleomagnetic studies(in Chinese).Earth Sci Front,2008,15:348-359[黄宝春,周姚秀,朱日祥.从古地磁研究看中国大陆形成与演化过程.地学前缘,2008,15:348-359]
    9 Ding L,Maksatbek S,Cai F L,et al.Processes of initial collision and suturing between India and Asia.Sci China-Earth Sci,2017,60:635-651
    10 Huang B C,Chen J S,Yi Z Y.Paleomagnetic discussion of when and where India and Asia initially collided(in Chinese).Chin J Geophys,2010,53:2045-2058[黄宝春,陈军山,易治宇.再论印度与亚洲大陆何时何地发生初始碰.地球物理学报,2010,53:2045-2058]
    11 Chen J,Huang B,Yi Z,et al.Paleomagnetic and40Ar/39Ar geochronological results from the Linzizong Group,Linzhou Basin,Lhasa Terrane,Tibet:Implications to Paleogene paleolatitude and onset of the India-Asia collision.J Asian Earth Sci,2014,96:162-177
    12 Chen J,Huang B,Sun L.New constraints to the onset of the India-Asia collision:Paleomagnetic reconnaissance on the Linzizong Group in the Lhasa Block,China.Tectonophysics,2010,489:189-209
    13 Meng J,Coe R S,Wang C,et al.Reduced convergence within the Tibetan Plateau by 26 Ma?Geophys Res Lett,2017,44:6624-6632
    14 Tong Y,Yang Z,Pei J,et al.Paleomagnetism of the Upper Cretaceous red-beds from the eastern edge of the Lhasa Terrane:New constraints on the onset of the India-Eurasia collision and latitudinal crustal shortening in southern Eurasia.Gondwana Res,2017,48:86-100
    15 Cao Y,Sun Z,Li H,et al.New Late Cretaceous paleomagnetic data from volcanic rocks and red beds from the Lhasa terrane and its implications for the paleolatitude of the southern margin of Asia prior to the collision with India.Gondwana Res,2017,41:337-351
    16 Zhu X Y,Liu C,Ye S J,et al.Remanence of red beds from Linzhou Xizang and the northward movement of the Indian plate(in Chinese).Sci Geol Sin,1977,12:44-51[朱湘元,刘椿,叶素娟,等.西藏林周地区红层的天然剩余磁性和印度洋板块的北向移动.地质科学,1977,12:44-51]
    17 Zhu Z W,Zhu X Y,Zhang Y M.Palaeomagnetic observation in Xizang and continental drift(in Chinese).Chin J Geophys,1981,24:40-49[朱志文,朱湘元,张一鸣.西藏高原古地磁及大陆漂移.地球物理学报,1981,24:40-49]
    18 Liebke U,Appel E,Ding L,et al.Position of the Lhasa terrane prior to India-Asia collision derived from palaeomagnetic inclinations of 53 Ma old dykes of the Linzhou Basin:Constraints on the age of collision and post-collisional shortening within the Tibetan Plateau.Geophys J Int,2010,182:1199-1215
    19 Sun Z,Jiang W,Li H,et al.New paleomagnetic results of Paleocene volcanic rocks from the Lhasa block:Tectonic implications for the collision of India and Asia.Tectonophysics,2010,490:257-266
    20 Dupont-Nivet G,Lippert P C,van Hinsbergen D J J,et al.Palaeolatitude and age of the Indo-Asia collision:Palaeomagnetic constraints.Geophys JInt,2010,182:1189-1198
    21 Huang W,Dupont-Nivet G,Lippert P C,et al.Inclination shallowing in Eocene Linzizong sedimentary rocks from southern Tibet:Correction,possible causes and implications for reconstructing the India-Asia collision.Geophys J Int,2013,194:1390-1411
    22 Meng J,Wang C,Zhao X,et al.India-Asia collision was at 24°N and 50 Ma:Palaeomagnetic proof from southernmost Asia.Sci Rep,2012,2:925
    23 Achache J,Courtillot V,Xiu Z Y.Paleogeographic and tectonic evolution of southern Tibet since Middle Cretaceous time:New paleomagnetic data and synthesis.J Geophys Res,1984,89:10311-10339
    24 Yi Z,Huang B,Yang L,et al.A quasi-linear structure of the southern margin of Eurasia prior to the India-Asia collision:First paleomagnetic constraints from Upper Cretaceous volcanic rocks near the western syntaxis of Tibet.Tectonics,2015,34:1431-1451
    25 Jinlu L,Watts D R.Palaeomagnetic results from the Tibetan Plateau.Philos Trans R Soc A-Math Phys Eng Sci,1988,327:239-262
    26 Tang X D,Huang B C,Yang L K,et al.Paleomagnetism and Ar-Ar geochronology of Cretaceous volcanic rocks in the middle Lhasa terrane,China and tectonic implications(in Chinese).Chin J Geophys,2013,56:136-149[唐祥德,黄宝春,杨列坤,等.拉萨地块中部晚白垩世火山岩Ar-Ar年代学和古地磁研究结果及其构造意义.地球物理学报,2013,56:136-149]
    27 Tan X,Gilder S,Kodama K P,et al.New paleomagnetic results from the Lhasa block:Revised estimation of latitudinal shortening across Tibet and implications for dating the India-Asia collision.Earth Planet Sci Lett,2010,293:396-404
    28 Yang T,Ma Y,Zhang S,et al.New insights into the India-Asia collision process from Cretaceous paleomagnetic and geochronologic results in the Lhasa terrane.Gondwana Res,2015,28:625-641
    29 Li Z,Ding L,Song P,et al.Paleomagnetic constraints on the paleolatitude of the Lhasa block during the Early Cretaceous:Implications for the onset of India-Asia collision and latitudinal shortening estimates across Tibet and stable Asia.Gondwana Res,2017,41:352-372
    30 Chen W,Yang T,Zhang S,et al.Paleomagnetic results from the Early Cretaceous Zenong Group volcanic rocks,Cuoqin,Tibet,and their paleogeographic implications.Gondwana Res,2012,22:461-469
    31 Ma Y,Yang T,Yang Z,et al.Paleomagnetism and U-Pb zircon geochronology of Lower Cretaceous lava flows from the western Lhasa terrane:New constraints on the India-Asia collision process and intracontinental deformation within Asia.J Geophys Res Solid Earth,2014,119:7404-7424
    32 Pozzi J P,Westphal M,Zhou X Y,et al.Position of the Lhasa block,South Tibet,during the late cretaceous.Nature,1982,297:319-321
    33 Ding J,Zhang S,Chen W,et al.Paleomagnetism of the Oligocene Kangtuo Formation red beds(Central Tibet):Inclination shallowing and tectonic implications.J Asian Earth Sci,2015,104:55-68
    34 Sun Z M,Jiang W,Pei J L,et al.New Early Cretaceous paleomagnetic data from volcanic of the eastern Lhasa Block and its tectonic implications(in Chinese).Acta Petrol Sin,24:1621-1626[孙知明,江万,裴军令,等.青藏高原拉萨地块早白垩纪火山岩古地磁结果及其构造意义.岩石学报,2008,24:1621-1626]
    35 Patzelt A,Li H,Wang J,et al.Palaeomagnetism of Cretaceous to Tertiary sediments from southern Tibet:Evidence for the extent of the northern margin of India prior to the collision with Eurasia.Tectonophysics,1996,259:259-284
    36 Yi Z Y,Huang B C,Chen J S,et al.Paleomagnetism of Early Paleogene marine sediments in southern Tibet,China:Implications to onset of the India-Asia collision and size of Greater India.Earth Planet Sci Lett,2011,309:153-165
    37 Aitchison J C,Ali J R,Davis A M.When and where did India and Asia collide?J Geophys Res-Solid Earth,2007,112:B05423
    38 Van der Voo R,Spakman W,Bijwaard H.Tethyan subducted slabs under India.Earth Planet Sci Lett,1999,171:7-20
    39 Gansser A.The significance of the Himalayan suture zone.Tectonophysics,1980,62:37-52
    40 Harrison T M,Copeland P,Kidd W,et al.Raising Tibet.Science,1992,255:1663-1670
    41 van Hinsbergen D J J,Lippert P C,Dupont-Nivet G,et al.Greater India Basin hypothesis and a two-stage Cenozoic collision between India and Asia.Proc Natl Acad Sci USA,2012,109:7659-7664
    42 Ao S J,Xiao W J,Windley B F,et al.Components and structures of the eastern Tethyan Himalayan Sequence in SW China:Not a passive margin shelf but a mélange accretionary prism.Geol J,2018,53:2665-2689
    43 Xiao W J,Ao S J,Yang L,et al.Anatomy of composition and nature of plate convergence:Insights for alternative thoughts for terminal IndiaEurasia collision.Sci China Earth Sci,2017,60:1015-1039
    44 Zhang Y,Huang B C.The influence of Cretaceous paleolatitude variation of the Tethyan Himalaya on the India-Asia collision pattern.Sci China Earth Sci,2017,60:1057-1066
    45 DeCelles P G,Gehrels G E,Najman Y,et al.Detrital geochronology and geochemistry of Cretaceous-Early Miocene strata of Nepal:Implications for timing and diachroneity of initial Himalayan orogenesis.Earth Planet Sci Lett,2004,227:313-330
    46 Ding L,Qasim M,Jadoon I A K,et al.The India-Asia collision in north Pakistan:Insight from the U-Pb detrital zircon provenance of Cenozoic foreland basin.Earth Planet Sci Lett,2016,455:49-61
    47 Zhang B X,Li Y X,Hu X M.Paleomagnetic results from Jurassic-Cretaceous strata in the Chuangde area of southern Tibet constrain the nature and timing of the India-Asia collision system(in Chinese).Chin Sci Bull,2017,62:298-311[张波兴,李永祥,胡修棉.藏南床得剖面古地磁结果对印度-亚洲碰撞方式的约束.科学通报,2017,62:298-311]
    48 Hodges K V.Tectonics of the Himalaya and southern Tibet from two perspectives.Geol Soc Am Bull,2000,112:324-350
    49 Royden L H,Burchfiel B C,van der Hilst R D.The geological evolution of the Tibetan Plateau.Science,2008,321:1054-1058
    50 Yin A.Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry,exhumation history,and foreland sedimentation.Earth Sci Rev,2006,76:1-131
    51 Gilder S A,Tan X,Bucher H,et al.Optimization of apparent polar wander paths:An example from the South China plate.Phys Earth Planet Inter,2008,169:166-177
    52 Yang T,Ma Y,Bian W,et al.Paleomagnetic results from the Early Cretaceous Lakang Formation lavas:Constraints on the paleolatitude of the Tethyan Himalaya and the India-Asia collision.Earth Planet Sci Lett,2015,428:120-133
    53 Huang W,van Hinsbergen D J J,Dekkers M J,et al.Paleolatitudes of the Tibetan Himalaya from primary and secondary magnetizations of Jurassic to Lower Cretaceous sedimentary rocks.Geochem Geophys Geosyst,2015,16:77-100
    54 Ma Y,Yang T,Bian W,et al.Early Cretaceous paleomagnetic and geochronologic results from the Tethyan Himalaya:Insights into the Neotethyan paleogeography and the India-Asia collision.Sci Rep,2016,6:21605
    55 Besse J,Courtillot V.Apparent and true polar wander and the geometry of the geomagnetic field over the last 200 Myr.J Geophys Res Solid Earth,2002,107:EPM 6
    56 Besse J,Courtillot V,Pozzi J P,et al.Palaeomagnetic estimates of crustal shortening in the Himalayan thrusts and Zangbo suture.Nature,1984,311:621-626
    57 Tong Y,Yang Z,Zheng L,et al.Early Paleocene paleomagnetic results from southern Tibet,and tectonic implications.Int Geol Rev,2008,50:546-562
    58 Klootwijk C T,Gee J S,Peirce J W,et al.An early India-Asia contact:Paleomagnetic constraints from Ninetyeast Ridge,ODP Leg 121.Geology,1992,20:395-398
    59 Liu G,Einsele G.Sedimentary history of the Tethyan basin in the Tibetan Himalayas.Geol Rundsch,1994,83:32-61
    60 Garzanti E.Stratigraphy and sedimentary history of the Nepal Tethys Himalaya passive margin.J Asian Earth Sci,1999,17:805-827
    61 Zhu D C,Pan G T,Mo X X,et al.Permain to Cretaceous volcanic activities in the central segment of the Tethyan Himalayas(Ⅰ):Distribution characteristics and significance(in Chinese).Geol Bull China,2004,23:645-654[朱弟成,潘桂棠,莫宣学,等.藏南特提斯喜马拉雅带中段二叠纪一白垩纪的火山活动(Ⅰ):分布特点及其意义.地质通报,2004,23:645-654]
    62 Hu X,Garzanti E,Moore T,et al.Direct stratigraphic dating of India-Asia collision onset at the Selandian(middle Paleocene,59±1 Ma).Geology,2015,43:859-862
    63 Zhu D,Pan G,Mo X,et al.SHRIMP U-Pb zircon dating for the dacite of the Sangxiu Formation in the central segment of Tethyan Himalaya and its implications.Chin Sci Bull,2005,50:563-568
    64 Zhong H M,Xia J,Tong J S,et al.New results and major progress in regional geological survey of the Lhozag County Sheet(in Chinese).Geol Bull China,2004,23:451-457[钟华明,夏军,童劲松,等.洛扎县幅地质调查新成果及主要进展.地质通报,2004,23:451-457]
    65 Halls H C.The use of converging remagnetization circles in palaeomagnetism.Phys Earth Planet Inter,1978,16:1-11
    66 Kirschvink J L.The least-squares line and plane and the analysis of palaeomagnetic data.Geophys J Int,1980,62:699-718
    67 Fisher R.Dispersion on a sphere.Proc R Soc A-Math Phys Eng Sci,1953,217:295-305
    68 Liu Q,Deng C,Yu Y,et al.Temperature dependence of magnetic susceptibility in an argon environment:Implications for pedogenesis of Chinese loess/palaeosols.Geophys J Int,2005,161:102-112
    69 Chenet A L,Fluteau F,Courtillot V,et al.Determination of rapid Deccan eruptions across the Cretaceous-Tertiary boundary using paleomagnetic secular variation:Results from a 1200-m-thick section in the Mahabaleshwar escarpment.J Geophys Res Solid Earth,2008,113:B04101
    70 Chenet A L,Courtillot V,Fluteau F,et al.Determination of rapid Deccan eruptions across the Cretaceous-Tertiary boundary using paleomagnetic secular variation:2.Constraints from analysis of eight new sections and synthesis for a 3500-m-thick composite section.J Geophys Res Solid Earth,2009,114:B06103
    71 Lhuillier F,Gilder S A,Wack M,et al.More stable yet bimodal geodynamo during the Cretaceous superchron?Geophys Res Lett,2016,43:6170-6177
    72 McElhinny M W.Statistical significance of the fold test in palaeomagnetism.Geophys J Int,1964,8:338-340
    73 Merrill R T,McElhinny M W.The Earth’s Magnetic Field:Its History,Origin and Planetary Perspective.London:Academic Press,1983.401
    74 Deenen M H L,Langereis C G,van Hinsbergen D J J,et al.Geomagnetic secular variation and the statistics of palaeomagnetic directions.Geophys J Int,2011,186:509-520
    75 Wu Y B,Zheng Y F.Ziron genetic mineralogy and constraints on U-Pb dating(in Chinese).Chin Sci Bull,2004,49:1589-1604[吴元保,郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报,2004,49:1589-1604]
    76 Rubatto D.Zircon trace element geochemistry:Partitioning with garnet and the link between U-Pb ages and metamorphism.Chem Geol,2002,184:123-138
    77 Zhong H M,Xia J,Tong J S,et al.Report of Regional Geological Survey of the People’s Republic of China:1:250000 Lhozag County Sheet(H46C004001)(in Chinese).Beijing:Geological Publishing House,2018[钟华明,夏军,童劲松,等.中华人民共和国区域地质调查报告:洛扎图幅(H46C004001),比例尺1:250000.北京:地质出版社,2018]
    78 Besse J.Apparent and true polar wander and the geometry of the geomagnetic field over the last 200 Myr.Correction.J Geophys Res,2003,108:2300
    79 Stagg H M J,Colwel J B,Direen N G,et al.Geology of the continental margin of enderby and mac.Robertson lands,east Antarctica:Insights from a regional data set.Mar Geophys Res,2004,25:183-219
    80 Zhu D C,Chung S L,Mo X X,et al.The 132 Ma Comei-Bunbury large igneous province:Remnants identified in present-day southeastern Tibet and southwestern Australia.Geology,2009,37:583-586
    81 Bian W,Yang T,Ma Y,et al.Paleomagnetic and geochronological results from the Zhela and Weimei Formations lava flows of the eastern Tethyan Himalaya:New insights into the breakup of eastern Gondwana.J Geophys Res Solid Earth,2019,124:44-64
    82 Klootwijk C T,Bingham D K.The extent of Greater India,iii.Palaeomagnetic data from the Tibetan Sedimentary series,Thakkhola region,Nepal Himalaya.Earth Planet Sci Lett,1980,51:381-405
    83 Qin S X,Li Y X,Li X H,et al.Paleomagnetic results of Cretaceous cherts from Zhongba,southern Tibet:New constraints on the India-Asia collision.J Asian Earth Sci,2019,173:42-53
    84 Van der Voo R.The reliability of paleomagnetic data.Tectonophysics,1990,184:1-9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700