用户名: 密码: 验证码:
中国煤矿井下地应力数据库及地应力分布规律
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Database and characteristics of underground in-situ stress distribution in Chinese coal mines
  • 作者:康红普 ; 伊丙鼎 ; 高富强 ; 吕华文
  • 英文作者:KANG Hongpu;YI Bingding;GAO Fuqiang;L Huawen;Coal Mining and Designing Branch,China Coal Research Institute;Coal Mining and Designing Department,Tiandi Science and Technology Co.,Ltd.;State Key Laboratory of Coal Mining and Clean Utilization;
  • 关键词:矿井 ; 地应力 ; 数据库 ; 分布规律
  • 英文关键词:underground coal mines;;in-situ stresses;;data base;;distribution features;;affecting factors
  • 中文刊名:煤炭学报
  • 英文刊名:Journal of China Coal Society
  • 机构:煤炭科学研究总院开采研究分院;天地科技股份有限公司开采设计事业部;煤炭资源高效开采与洁净利用国家重点实验室;
  • 出版日期:2019-01-15
  • 出版单位:煤炭学报
  • 年:2019
  • 期:01
  • 基金:国家重点研发计划资助项目(2017YFC0603003)
  • 语种:中文;
  • 页:30-40
  • 页数:11
  • CN:11-2190/TD
  • ISSN:0253-9993
  • 分类号:TD311
摘要
收集了采用井下小孔径水压致裂地应力测量装置获得的煤矿地应力数据,以及其他采用应力解除法、水压致裂法等获得的煤矿地应力数据,共计1 357条。在此基础上建立了"中国煤矿井下地应力数据库",绘制了中国煤矿矿区地应力分布图。分析了我国煤矿井下地应力分布特征和主要影响因素,取得以下研究成果:(1)埋深是影响煤矿井下地应力的重要因素。垂直应力总体上随埋深增加不断增大,但数据存在一定的离散性。最大、最小水平主应力总体上也与埋深呈正相关关系,但数据离散性更大。(2)在浅部煤矿,地应力类型主要为逆断型应力状态(σH>σh>σV);在千米深井,主要为正断型应力状态(σV>σH>σh);介于两者之间主要为走滑型应力状态(σH>σV>σh)。(3)水平应力与垂直应力的比值(包括最大、最小水平主应力与垂直应力的比值;平均水平主应力与垂直应力的比值;最大水平主应力与最小水平主应力之差与垂直应力的比值),埋深越小,这些比值离散性越大,分布范围越广。随着埋深增加,比值的离散性和范围越来越小,并逐渐趋于某一定值。(4)粉砂岩、细砂岩、泥质砂岩和泥岩4类岩性地应力数据统计结果表明,总体上,岩石强度越高,承受的水平应力越大。(5)弹性模量较大的岩石,水平应力较高;弹性模量较低的松软破碎岩层,水平应力较低。
        A total 1357 items of in-situ stress measurement data in Chinese underground coal mines were collected,which include the data obtained by hydraulic fracturing method with small borehole applied by Mining Branch,China Coal Research Institute,and those from overcoring and hydraulic fracturing methods by other companies and organizations.The in-situ stress database of Chinese underground coal mines was established on the basis of those data,and the in-situ stress map for Chinese underground coal mines was drawn.The in-situ stress distribution features and its affecting factors were studied.The achievements are as follows:(1) the buried depth of measurement sites is an important fac-tor affecting the in-situ stresses in underground coal mines.In general,the vertical stress increases with depth,as some discreteness of stress data exists. The maximum and minimum horizontal principal stresses also increase with depth,however,the discreteness of stress data is obviously greater than that of vertical stresses,and the increasing rate of horizontal stresses with depth is smaller than that of vertical stresses.(2) The stress regime is mainly thrust type(σH> σh> σV) in shallow coal mine,and normal type(σV> σH> σh) in coal mine with depth more than 1 000 m,while it is mainly slip type(σH> σV> σh) with depth in between.(3) The ratios of horizontal stresses to vertical stresses,including those of maximum,minimum and average horizontal principal stresses to vertical stresses,the difference between the maximum and minimum horizontal principal stresses to vertical stresses,distribute in a broad range with a greater discreteness when depth is shallow.As the depth increases,the discreteness of these ratios gradually decreases with a tendency to approach constant values.(4) The stress statistical results of four strata with different lithology,that is siltstone,fine sandstone,mud sandstone and mudstone,point out that,in general,the larger the rock strength,the higher the horizontal stresses the rocks bear.(5) The rocks with higher elastic modulus bear larger horizontal stresses.However,the soft and fractured rocks with lower elastic modulus bear less horizontal stresses.
引文
[1] AMADEI B,STEPHANSSON O. Rock stress and its measurement[M].London:Chapman and Hau,1997:96-113.
    [2] ZANG A,STEPHANSSON O.Stress field of the earth’s crust[M].Heideberg:Springer,2006:115-116.
    [3]康红普.煤岩体地质力学原位测试及在围岩控制中的应用[M].北京:科学出版社,2013.
    [4]康红普,林健,张晓.深部矿井地应力测量方法研究与应用[J].岩石力学与工程学报,2007,26(5):929-933.KANG Hongpu,LIN Jian,ZHANG Xiao.Research and application of in-situ stress measurement in deep mines[J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(5):929-933.
    [5]康红普,司林坡,张晓.浅部煤矿井下地应力分布特征研究及应用[J].煤炭学报,2016,41(6):1332-1340.KANG Hongpu,SI Linpo,ZHANG Xiao. Characteristics of underground in-situ stress distribution in shallow coal mines and its applications[J].Journal of China Coal Society,2016,41(6):1332-1340.
    [6]康红普,林健,颜立新,等.山西煤矿区井下地应力场分布特征研究[J].地球物理学报,2009,52(7):1782-1792.KANG Hongpu,LIN Jian,YAN Lixin,et al. Study on characteristics of underground in-situ stress distribution in Shanxi coal mining fields[J].Chinese Journal of Geophysics,2009,52(7):1782-1792
    [7] KANG H,ZHANG X,SI L,et al.In-situ stress measurements and stress distribution characteristics in underground coal mines in China[J].Engineering Geology,2010,116:333-345
    [8] HAST N.The state of stress in the upper part of the Earth’s crust[J].Tectonophysics,1969,8(3):169-211.
    [9] STEPHANSSON O,SARRKKA P,MYRVANG A.State of stress in Fennoscandia[A]. Proceeding of the International Symposium on Rock Stress and Rock Stress Measurements[C]. Stockholm,1986:1-3.
    [10] ARJING B,HERGET G.In-situ ground stresses in the Canadian Hardrock Mine:An Update[J]. Int. J. Rock Mech.&Min. Sci.,1997,34:3-4.
    [11] PAOLO M,Alessandro Amato,Silvia Pondrelli.Active Stress Map of Italy[J]. Journal of Geophysical Rescarch,1999,104:25595-25610.
    [12] ZOBACK M L.First and second order patterns of stress in the lithosphere:The World Stress Map Project[J]. Journal of Geophysical Research,1992,97(B8):1761-1782.
    [13] HEIDBACH O,TINGAY M,BARTH A,et al.Global crustal stress pattern based on the world stress map database release 2008[J].Tectonophysics,2010,482(1):3-15.
    [14]景锋.中国大陆浅层地壳地应力场分布规律及工程扰动特征研究[D].北京:中国科学院研究生院,2009.
    [15]谢富仁,陈群策,崔效锋,等.中国大陆地壳应力环境基础数据库[J].地球物理学进展,2007,22(1):131-136.XIE Furen,CHEN Qunce,CUI Xiaofeng,et al. Fundamental database of crustal stress environment in continental China[J].Progress in Geophysics,2007,22(1):131-136.
    [16]杨树新,姚瑞,崔效锋,等.中国大陆与各活动地块、南北地震带实测应力特征分析[J].地球物理学报,2012,55(12):4207-4217.YANG Shuxin,YAO Rui,CUI Xiaofeng,et al.Analysis of the characteristics of measured stress in Chinese mainland and its active blocks and North-South seismic belt[J]. Chinese Journal of Geophysics,2012,55(12):4207-4217.
    [17]李化敏,周英,苏承东,等.砚北煤矿地应力测量及其特征分析[J].岩石力学与工程学报,2004,23(23):3938-3942.LI Huamin,ZHOU Ying,SU Chengdong,et al. Measurement and characteristics analysis of in-situ stress of Yanbei Coal Mine[J].Journal of Rock Mechanics and Engineering,2004,23(23):3938-3942.
    [18]蔡美峰,郭奇峰,李远,等.平顶山十矿地应力测量及其应用[J].北京科技大学学报,2013,35(11):1399-1306.CAI Meifeng,GUO Qifeng,LI Yuan,et al. In-situ stress measurement and its application in the 10th mine of Pingdingshan coal group[J].Journal of University of Science and Technology Beijing,2013,35(11):1399-1406.
    [19]张延新,蔡美峰,王克忠.平顶山一矿地应力分布特征研究[J].岩石力学与工程学报,2004,23(23):4033-4037.ZHANG Yanxin,CAI Meifeng,WANG Kezhong. Study on distribution characteristics of in-situ stresses for Pingdingshan No.1 Mine[J]. Chinese Journal of Rock Mechanics and Engineering,2004,23(3):4033-4037.
    [20]王连国,陆银龙,杨新华,等.霍州矿区地应力分布规律实测研究[J].岩石力学与工程学报,2010,29(1):2768-2773.WANG Lianguo,LU Yinlong,YANG Xinhua,et al,Study of distribution characteristics of in-situ stresses for Huozhou mining area[J].Chinese Journal of Rock Mechanics and Engineering,2010,29(1):2768-2773.
    [21]周钢,李玉寿,吴振业.大屯矿区地应力测量与特征分析[J].煤炭学报,2005,30(3):314-318.ZHOU Gang,LI Yushou,WU Zhenye.Measurement of crustal stress and analysis of characteristics in Datun mining area[J]. Journal of China Coal Society,2005,30(3):314-318.
    [22] HAN J,ZHANG P T,TIAN X G,et al.The in situ stress state of Kailuan mining area[A]. Rock Stress and Earthquakes:Proceedings of the Fifth International Symposium on In-situ Rock Stress[C].Beijing,2010:375-380.
    [23]王迎超,靖洪文,陈坤福,等.平顶山矿区地应力分布规律与空间区域划分[J].岩石力学与工程学报,2014,33(S1):2620-2627.WANG Yingchao,JING Hongwen,CHEN Kunfu,et al.Study of distribution regularities and regional division of in-situ stresses for Pingdingshan mining area[J]. Chinese Journal of Rock Mechanics and Engineering,2010,33(S1):2620-2627.
    [24]张国锋,朱伟,赵培.徐州矿区深部地应力测量及区域构造作用分析[J].岩土工程学报,2012,34(12):2318-2324.ZHANG Guofeng,ZHU Wei,ZHAO Pei. In-situ stress measurements and analysis of action of geological structures of deep coal mines in Xuzhou[J]. Chinese Journal of Geotechnical Engineering,2012,34(12):2318-2324.
    [25]刘泉声,刘恺德.淮南矿区深部地应力场特征研究[J].岩土力学,2012,33(7):2089-2096.LIU Quansheng,LIU Kaide. Characteristics of in-situ stress field for deep levels in Huainan coal mine[J]. Rock and Soil Mechanics,2012,33(7):2089-2096.
    [26]蔡美峰,陈长臻,彭华,等.万福煤矿深部水压致裂地应力测量[J].岩石力学与工程学报,2006,25(5):1069-1074.CAI Meifeng,CHEN Changzhen,PENG Hua,et al. In-situ stress measurement by hydraulic fracturing technique in deep position of Wanfu coal mine[J]. Chinese Journal of Rock Mechanics and Engineering,2006,25(5):1069-1074.
    [27]彭华,马秀敏,姜景捷,等.赵楼煤矿1 000 m深孔水压致裂地应力测量及其应力场研究[J].岩石力学与工程学报,2011,30(8):1638-1645.PENG Hua,MA Xiumin,JIANG Jingjie,et al. Research on stress field and hydraulic fracturing in-situ stress measurement of1 000 m deep hole in Zhaolou coal mine[J]. Chinese Journal of Rock Mechanics and Engineering,2011,30(8):1638-1645.
    [28]伊丙鼎.煤矿井下地应力数据库及地应力影响因素研究[D].北京:煤炭科学研究总院,2017.
    [29] BROWN E T,HOEK E.Trends in relationships between measured in-situ stresses and depth[J]. International Journal of Rock Mechanics and Mining Sciences&Geomechanics Abstract,1978,15:211-215.
    [30]赵德安,陈志敏,蔡小林,等.中国地应力场分布规律统计分析[J].岩石力学与工程学报,2007,26(6):1265-1271.ZHAO Dean,CHEN Zhimin,CAI Xiaolin,et al. Analysis of distribution rule of geostress in China[J].Chinese Journal of Rock Mechanics and Engineering,2007,26(6):1265-1271.
    [31]陈志敏.不同岩性侧压比随深度变化规律探讨[J].西部探矿工程,2006,(6):99-101.CHEN Zhimin. Discussion on change law of different lithology’s side press ratio with depths[J].West-China Exploration Engineering,2006,(6):99-101.
    [32]朱焕春,陶振宇.不同岩石中地应力分布[J].地震学报,1994,16(1):49-63.ZHU Huanchun,TAO Zhenyu. Geostress distributions in different rocks[J].Acta Seismologic Sinica,1994,16(1):49-63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700